CR-189409

SOFTWARE ENGINEERING LABORATORY SERIES _ SEL-94-004

COLLECTED SOFTWARE
ENGINEERING PAPERS:
VOLUME Xii

NOVEMBER 1994

(MASA-CR=-1£9409) CCLLELCTFD NGS-28T713
SOFTWARFE ENGINEERING PAPERS, VCLUME

12 (NASA. Goddard Space Flight

Center) 117 p Unclas

NS/

National Aeronautics and
Space Administration

Goddard Space Flight Cent
Greenbelt, Maryland 20771

SOFTWARE ENGINEERING LABORATORY SERIES SEL-94-004

COLLECTED SOFTWARE
ENGINEERING PAPERS:
VOLUME XiIi

NOVEMBER 1994

NNS

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

Foreword

The Software Engineering Laboratory (SEL) is an organization sponsored by the National
Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) and
created to investigate the effectiveness of software engineering technologies when applied to
the development of applications software. The SEL was created in 1976 and has three
primary organizational members:

NASA/GSFC, Software Engineering Branch
University of Maryland, Department of Computer Science
Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (1) to understand the software development process in the GSFC
environment; (2) to measure the effect of various methodologies, tools, and models on this
process; and (3) to identify and then to apply successful development practices. The
activities, findings, and recommendations of the SEL are recorded in the Software
Engineering Laboratory Series, a continuing series of reports that includes this document.

Single copies of this document can be obtained by writing to

Software Engineering Branch
Code 552

Goddard Space Flight Center
Greenbelt, Maryland 20771

10022514L m
- NS
PAGE |\ INTERTIONE S B AN

PRECEDING. PAGE BLANK NUT FILMED

TABLE OF CONTENTS

Section 1—Introduction il 1-1
Section 2—Software Measurement it 2-1
“A Change Analysis Process to Characterize Software Maintenance Projects,”

L. C. Briand, V. R. Basili, Y. Kim, and D. R. Squier 2-3
Defining and Validating High-Level Design Metrics, L. Briand, S. Morasca,

and V. R. Basiliot 2-15
Section 3—Technology Evaluations oot 3-1

Comparing Detection Methods for Software Requirements Inspections: A
Replicated Experiment, A. A. Porter, L. G. Votta Jr., and

Vo R BaSIH &ttt ittt e i i et et e 3-3
“Software Process Evolution at the SEL,” V. Basiliand S.Green 3-33
Sectiond4—AdaTechnology i, 4-1

””

“Genericity Versus Inheritance Reconsidered: Self-Reference Using Generics,
E.SeideWitzcoiiii i i i it 43

Standard Bibliography of SEL Literature

10022514L v

PalE Sx NYENTIGMN AL LY B
hpfs P rare oan X5 [74 2o . ’ PR e e MV TN !Uf‘.f\i.l_.’ bL"“\!K
PRECEDRG FRER G140 ROT FILVED

SECTION 1—INTRODUCTION

This document is a collection of selected technical papers produced by participants in the
Software Engineering Laboratory (SEL) from November 1993 through October 1994. The
purpose of the document is to make available, in one reference, some results of SEL research
that originally appeared in a number of different forums. This is the 12th such volume of
technical papers produced by the SEL. Although these papers cover several topics related to
software engineering, they do not encompass the entire scope of SEL activities and interests.
Additional information about the SEL and its research efforts may be obtained from the
sources listed in the bibliography at the end of this document.

For the convenience of this presentation, the five papers contained here are grouped into
three major sections:

® Software Measurement
o Technology Evaluations
e Ada Technology

The first section (Section 2) includes a study on the analysis of software maintenance
changes to understand the flaws in the change process and a study on the comparison of four
strategies for defining high-level design metrics. Section 3 presents studies on software
inspection techniques and the SEL’s Quality Improvement Paradigm. A study on simulating
inheritance in an object-oriented environment appears in Section 4.

The SEL is actively working to understand and improve the software development process at
Goddard Space Flight Center (GSFC). Future efforts will be documented in additional
volumes of the Collected Software Engineering Papers and other SEL publications.

10022514L 1-1

SECTION 2—SOFTWARE MEASUREMENT

The technical papers included in this section were originally prepared as indicated below.

“A Change Analysis Process to Characterize Software Maintenance Projects,”

°
L. C. Briand, V.R. Basili, Y. Kim, and D. R. Squier, Proceedings of the Interna-
tional Conference on Software Maintenance, September 1994

® Defining and Validating High-Level Design Metrics, L. Briand, S. Morasca, and

V. R. Basili, University of Maryland, Technical Report TR-3301, June 1994

10022514L

A Change Analysis Process to Characterize Software Maintenance Projects

Lionel C. Briand, Victor R. Basili, Yong-Mi Kim
Computer Science Department and Institute for Advanced Computer Studies
University of Maryland, College Park, MD, 20742

Donald R. Squier
Computer Sciences Corporation
System Sciences Division
Lanham-Seabrook, MD, 20706

Abstract

In order to improve software maintenance processes, we
need to be able to first characterize and assess them.
This task needs to be performed in depth and with
objectivity since the problems are complex. One
approach is to set up a measurement program
specifically aimed at maintenance. However,
establishing a measurement program requires that one
understands the issues and is able to characterize the
maintenance environment and processes in order to
collect suitable and cost-effective data. Also, enacting
such a program and getting usable data sets takes time .
A short term substitute is needed.

We propose in this paper a characterization process
aimed specifically at maintenance and based on a
general qualitative analysis methodology. This process
is rigorously defined in order to be repeatable and usable
by people who are not acquainted with such analysis
procedures. A basic feature of our approach is that
maintenance changes are analyzed in order to understand
the flaws in the change process. Guidelines are provided
and a case study is shown that demonstrates the
usefulness of the approach.

1 Introduction

As described in [HV92], numerous factors can affect
software maintenance quality and productivity, e.g., the
maintenance personnel experience profile and training,
the way knowledge about the maintained systems is
managed and conveyed to the maintainers and users, the
maintenance organization, processes and standards in
use, the initial quality of the software source code and
its documentation. This last factor involves concepts
such as self-descriptiveness, modularity, simplicity,
consistency, expandability, and testability.

Because of the complexity of the phenomena studied, it
is difficult for maintenance organizations to identify and
assess the issues they have to address in order to
improve the quality and productivity of their
maintenance projects. Each project may encounter
specific difficulties and situations that are not
necessarily alike across all the organization's

This work was supported in part by NASA grant NSG-

5123

10022514L

maintenance projects. This may be due in part to
variations in application domain, size, cbange
frequency, and/or schedule/budget constraints. As a
consequence, each project has first to be analyzed as a
separate entity even if, later on, commonalities across
projects may require similar solutions for
improvement. Informally interviewing the people
involved in the maintenance process would be unlikely
to help determine accurately the real issues.
Maintainers, users and owners would likely each give
very different, and often contradictory, insights on the
issues due to a somewhat incomplete and biased
perspective.

Establishing a measurement program integrated into the
maintenance process is likely to help any organization
achieve an in-depth understanding of its specific
maintenance issues and thereby lay a solid foundation
for maintenance process improvement [RUV92].
However, defining and enacting a measurement program
may take time and a short term, quickly operational
substitute is needed in order to obtain a first quick
insight, at low cost, into the issues to be addressed.
Furthermore, defining efficient and useful measurement
procedures first requires a characterization of the
maintenance environment in which measurement takes
place, i.e., organization structures, processes, issues,
risks, etc. [BR88].

This paper presents a qualitative and inductive analysis
methodology for performing objective project
characterizations and thereby identifying their specific
problems and needs. It is an implementation of the
general qualitative analysis methodology defined in
[SS92]. It encompasses a set of procedures which
allows the determination of causal links between
maintenance problems and flaws of the maintenance
organization and process. Thus, a set of concrete steps
for maintenance quality and productivity improvement
can be taken based on a tangible understanding of the
relevant maintenance issues. Moreover, this
understanding provides a solid basis on which to define
relevant software maintenance models and metrics.
Section 2 describes the phases, techniques and
guidelines composing the methodology. Section 3
presents a case study of an orbit determination system
maintained by the Flight Dynamics Division (FDD) of
the NASA Goddard Space Flight Center for the last 26
years and still used daily for most operating satellites

PRECEDING PAGE BLANK NOT FILMED

Induective Inference

Observational Data Basec

- Interviews with maintainers/users
- System and release documents
+Fleld dats

- Change request farms

Interpretati

« Definitions (e.g., activities)

- Taxonomies (e.g. tools)

« Warking hypotheses (e.g., exror
mechanisms, process fiaws)

Deductive Inference

Figure 1: Qualitative Analysis Process for Software Maintenance

(GTDS: Goddard Trajectory Determination System).
This study takes place in the framework of the NASA
Software Engineering Laboratory (NASA-SEL), an
organization aimed at improving FDD software
development processes based on measurement and
empirical analysis. Recently, responding to the
growing cost of software maintenance, the SEL has
initiated a program aimed at characterizing, evaluating
and improving its maintenance processes. This paper is
a first step in this direction. Section 4 outlines the
main conclusions of the case study and the future
2 Causal of Maintenance
Problems

Analysis

In this section, we present a (mainly) qualitative
methodology that allows for an in-depth
characterization of maintenance projects at a relatively
low cost. However, this approach could be easily
augmented to integrate data collection and analysis and
could thus provide more quantitative information (but
at a higher cost).

2.1 A Qualitative Analysis Process

This characterization process is essentially an
instantiation of the generic qualitative analysis process
defined in [SS92]. Figure 1 illustrates at a high level
our maintenance specific analysis process. It can be
seen that it is a combination of both inductive and
deductive inferences. Inductive inferences are based on
the collected information, and deductive inferences occur
when experimentally validating and refining our

10022514L

2-4

taxonomies, process models, organizational models and
working hypotheses. These deductive inferences then
serve to refine the data collection process, which leads
to refined and revised inductive inferences. The process
continues in an iterative fashion.

We present below a general description of the process
involved in preparing and performing characterizations
of maintenance projects. Maintenance is defined here as
any kind of enhancement, adaptation or correction
performed on the software system once in operation. At
the highest level of abstraction, parts of this process do
not appear specific to maintenance and could also be
used for development. However, the taxonamies and
guidelines developed to support this process and
presented in Section 2.2 are specifically aimed at
maintenance.

Step 1 focuses on defining the organizational
structures, i.e., organization entities, their
communication channels and information flows. The
process of producing a new release is then described and
modeled in Step 2. It is important to note that we do
not address here the issues related to emergency bug
fixing procedures but only those relevant to regular
product releases that go into configuration
management. Step 3 maps generic activities into the
release process in order to specify the type of work
performed at each stage of the process. Then, a release
(or several) has to be selected in order to define the set
of changes on which the analysis will be performed
(Step 4). In Step 5, relying on the work performed in
Steps 1-3, information about the changes is collected
and analyzed. Step 6 summarizes and abstracts from the
results obtained in Step 5.

Although the steps are defined sequentially, they are
~ really iterated within and across steps. As we learn

more about the organization, we continue to refine the
characterization models. The organizational and process
models produced should include enough detail to allow
Step 5 to be performed, but should not be so detailed as
to obscure the maintenace process itself. We now define
the steps in more detail:

1 Identify the organizational entities with which
the maintenance team interacts and the organizational
structure in which maintainers operate.

1.1 Identify distinct organizational entities, i.e.,
what are the distinct teams involved in the maintenance
project? Usually, besides the maintainers themselves,
the following entities are encountered: users, owners,
QA team, configuration control team, change control
board. However, their roles and prerogatives can differ
significantly.

1.2 Characterize the working environment of each
entity, i.e., support tools (see tool taxonomy in
Section 2.2), internal organizational structure.

1.3 Characterize information flows between
entities, i.e., what is the type (and amount when data
available) of information, documentation, source code
and other software artifacts flowing between
organizational entities?

2 Identify the phases involved in the creation of
a new system release.

2.1 Identify the phases as defined in the
environment studied. At this stage, it is important not
to map an @ priori external/generic maintenance process
model and vocabulary.

2.2 Each artifact (e.g., document, source code)
which is input or output of each phase has to be
determined and its content carefully described (see
document taxonomy in Section 2.2).

23 The personnel in charge of producing and
validating the output artifacts of each phase bave to be
identified and located in the organizational structure
defined in Step 1.

3 Identify the generic activities involved in each
phase.
31 Select (from the literature [C88, BC91]) or

define a taxonomy of generic activities based on widely
accepted definitions and used in the maintenance
process. As a guideline, such a taxonomy is proposed
in the next section.

32 Map these activities into each phase by
reading the technical documents produced and
interviewing the technical project leaders and
maintainers about their real work habits. If possible,

10022514L

2-5

collect effort data for each activity so that the
importance of each activity in each phase can be
assessed somewhat quantitatively.

4 Select one or several past releases for analysis.

We need to select releases on which we can analyze
problems as they are occuring and thereby better
understand process and organization flaws. However,
because of time constraints, it is sometimes more
practical to work on past releases. We present below a
set of guidelines for selecting them:

. Recent releases are preferable since
maintenance processes and organizational structure
might have changed and this would make one's analysis
somewhat irrelevant.

. Some releases may contain more complete
documeantation than others. Documentation has a very
important role in detecting problems and cross-checking
the information provided by the maintainers.

. The technical leader(s) of a release may have
left the company whereas another release’s technical
leader may still be contacted. This is a crucial element
since, as we will see, the causal analysis process will
involve project technical leader(s) and, depending on
his/her/their level of control and knowledge, possibly
the maintainers themselves.

5 Analysis of the problems that occurred while
performing the changes of the selected releases.

For each change (i.e., error correction,
enhancement, adaptation) in the selected release(s), the
following information should be acquired by
interviewing the maintainers and/or technical leaders
and by reading the related documentation (e.g., release
documents):

I1. Determine the difficulty or error-proneness of the
change.

12. Determine whether the change difficulty could bave
been alleviated or the error(s) resulting from the change
avoided and how?

I13. Evaluate the size of the change (e.g., # components,
LOCs changed, added, removed).

I4. Assess discrepancies between initial & intermediate
planning and actual effort / time.

I5. Determine the human flaw(s) (if any) that originated
the error(s) or increased the difficulty related to the
change. A taxonomy of human errors is proposed in
Section 2.2.

16. Determine the maintenance process flaws that led to
the identified human errors (if any). A taxonomy of
maintenance process flaws is proposed in Section 2.2.
17. Try to quantify the wasted effort and/or delay
generated by the maintenance process flaws (if any).

The knowledge and understanding acquired
through steps 1-3 is necessary in order to understand,
interpret and formalize the information of type 12, IS or
I6. As a guidance in conducting interviews, templates
of questions will be provided in Section 2.2.

6 Establish the frequency and consequences of
problems due to flaws in the organizational structure
and the maintenance process by analyzing the
information gathered in Step 5.

Based on these results, further complementary
investigations (e.g., measurement based) related to
specific issues that have not been fully resolved by the
qualitative analysis process, should be identified.
Moreover, a first set of suggestions for maintenance
process improvement should be devised.

For those steps which are iterative, we map
the appropriate step back into the qualitative analysis
process (Figure 1). Thereby, we show how our
characterization process fits into the more general
qualitative analysis methodology presented above. In
this context, a step usually corresponds to a set of
iterations of the qualitative analysis process. Thus for
each step we have the input to that step which defines
the Observational Database (ODB), the output of each
step which contains the resulting characterization
models that go into the Interpretative Knowledge Base
(IKB), and a validation procedure which belps verify
that the characterization models are correct. The pieces
of information which compose the QDB are given in
decreasing order of importance at each step. The order
and content of the ODB varies at each step since the
analysis focus is progressively shifting [SS92].

Step 1: Model organizational structures

Input: maintenance standards definition document,
interviews, sample of release documents, organization
chart
Output: organizational model (roles, agents, teams,
information flow, etc.)
Validation:

. Are all the standard documents and artifacts
included in the modeled information flow?

. Do we know who produces, validates, and
certifies the standard documents and artifacts?

. Are all the people referenced in the release
documents a part of the organization scheme?

Steps 2, 3:
process phases

Model process and map activities into

Input: maintenance standards definition document,
interviews, release documents

Output: process model

Validation:

10022514L

. Are all the people in the process model a part
of the organization scheme?

. Do the documents and artifacts included in the
process model match those of the information flow of
the organization model?

. Is the mapping between activities and phases
complete, i.e., exhaustive set of activities, complete
mapping?

. Are the taxonomies of maintenance tools,
methods, and activities adequate, i.e., unambiguous,
disjoint and exhaustive classes?

Step 5: Perform causal analysis

Input: interviews, change request forms, release
documents, organization model, process model,
maintenance standards definition document

Output: causal analysis

Validation:

Are the taxonomies of errors and
maintenance process flaws adequate, i.e., unambiguous,
disjoint and exhaustive classes? This is checked against
actual change data and validated during interviews with
2.2 Guidelines and Taxonomies
This section presents a set of guidelines aimed at
facilitating the characterization process described in the
previous section. These guidelines are mainly
composed of taxonomies distinguishing maintenance
activities, errors and maintenance process flaws. In
addition, a set of questions which can be used during
maintainers’ interviews and for each change is provided.

Step 1: Identify organizational entities

Taxonomies of Maintenance Tools and Methods (Step
1.2)

The maintenance tools and methods available to
maintainers can be used to understand the maintenance
process, and identify potential sources of problems. The
following paragraphs represent the first level of
abstraction of environment characteristics’ taxonomies
that should be used to characterize the change
framework:

. Maintenance Tools: Impact analysis &
planning tool ; Tools for automated extraction &
representation of control and data flows ; Debugger ;
Cross-referencer ; Regression testing environment (data
generation, execution, and analysis of results) ;
Information system linking documentation and code.

. Maintenance Methods are characterized by the
following taxonomy: rigorous impact analysis,
planning, and scheduling procedures ; Systematic and
disciplined update procedures of the user and system

documentation ; Communication channels and
procedures with the users ;

A Taxonomy of Maintenance Documentation (Step
1.3)

The type of documentation related to a software system,
which may be available to maintainers, can be defined
by a generic taxonomy as shown below.
Documentation has been described as one of the most
important factors affecting the maintainability of a
software system [HA93, P94]. This is why it is
important to define precisely what should be contained
in a complete set of documentation (either on-line or
off-line) for maintenance. Such a taxonomy can be used
as a guideline to define the maintenance organization.
Also, when some of these documents appear to be
missing, potential sources of maintenance problems
may be identified. Based on the literature [BC91] on the
subject and our own experience, we propose the
following taxonomy:

+ Product-related: Software requirements specifications ;
Software design specifications ; Software product
specifications '

+ Process-related: Test plans ; Configuration
management plan ; Quality assurance plan ; Software
development plan

» Support-related: Software user's manual ; Computer
systems operator's manual ; Software maintenance
manual ; Firmware support manual

Step 3: Identify the generic activities involved in each
phase.

Generic Description of Maintenance Activities (Step
3.1)

Acronym Activity

DET Determination of the need for a
change

SUB Submission of change request

UND Understanding requirements of
changes: localization, change
design prototype

IA Impact analysis

CBA Cost/benefit analysis

AR Approval/Rejection/priority
assignment of change request

SC Scheduling of task

CD Change design

CC Code changes

uT Unit testing of modified parts
i.e., has the change been
implemented?

IT integration testing,

10022514L

i.e., does the changed

part interface correctly with the
system?

Regression testing,

i.e., does the change have any
unwanted side effects?
Acceptance testing

i.e., does the new release fulfill
the system requirements?
Update system & user
documentation

Standards characterizations;
quality assurance procedures

IS Installation

RT

AT

USD
SA

PIR Post-installation review of
changes

EDU Education/training regarding the
application domain/system

All these activities usually contain an overhead of
communication (meeting + release document writing)
with owner/users, management hierarchy and other
maintainers which should be estimated. This is
possible, through data collection or by interviewing
maintainers (e.g., Delphi method).

Step 5: Perform causal analysis

Questions asked for each change in selected release(s)
(Items 11-14)

The following list describes a set of questions for
which answers can be provided by maintainers and/or
release standard documents. These questions attempt to
capture the information necessary for the identification
of maintenance process flaws.

1 - Description of the change

1.1 Localization
subsystem(s) affected
module(s) affected
inputs/outputs affected

1.2 Size
LOCs deleted, changed, added
Modules examined, deleted, changed,
added

1.3 Type of change
. Preventive changes: improvement of clarity,
maintainability or documentation.

Enhancement changes: add functionalities,
optimization of space/time/accuracy
. Adaptive changes: adapt system to change of hardware
and/or platform
. Corrective changes: corrections of development errors.

2 - Description of the change process
2.1 effort, elapsed time

2.2 maintainer’s expertise and experience
How long has the person been working
on the system
How long has the person been working
in this application domain?

2.3 Did the change generate a change in any document?
Which document(s)?

3 - Description of the problem

3.1 Were some errors committed?
Description of the errors (see
taxonomies below)
Perceived cause of the errorss:
maintenance process flaw(s)

3.2 Difficulty
‘What made the change difficult?
What was the most difficult activity
associated with the change?

3.3 How much effort was wasted (if any) as a result of
maintenance process flaws?

3.4 What could have been done to avoid some of the
difficulty, errors (if any)?

Taxonomies of human errors (Item 15)

Note that we are exclusively refering to errors occuring
during the maintenance process, not errors resulting
from the development.

» Error Origin: when did the misunderstanding occur?
Change requirements analysis
Change localization analysis
Change design analysis
Coding

* Error domain: what caused it?

Lack of application domain knowledge:
operational constraints (user interface, performance),
mathematical model
. Lack of system design or implementation
knowledge: data structure or process dependencies,
performance or memory constraints, module interface
inconsistency
. Ambiguous or incomplete requirements

Language misunderstanding <semantic,

syntax>

Schedule pressure

Existing uncovered fault

Oversight.

10022514L

Determining the origin and cause of the errors will help
determine their possible causal relationships to
maintenance process flaws in the taxonomy presented
below.

Taxonomy of Maintenance Process flaws (Item 16)
¢ Organizational flaws:

communication: Interface problems,
mformauon flow "bottlenecks” in the communication
between the maintainers and the

users

management hierarchy

quality assurance (QA) team

configuration management team

roles:

prerogatives and responsibilities are not fully

defined or explicit

incompatible responsibilities, e.g.,

development and QA

process conformance: no effective structure for

enforcing standards and processes

+ Maintenance methodological flaws

. Inadequate change selection & priority
assignment process
Inaccurate methodology for planning of effort,
schedule, personnel
Inaccurate methodology for impact analysis
Incomplete, ambiguous protocols for transfer,
preservation and maintenance of system
knowledge
Incomplete, ambiguous definitions of
change requirements
Lack of rigor in configuration (versions,
variations) management and control
Undefined / unclear regression testing
success criteria.

« Resource shortages

. Lack of financial resources allocated, e.g.,
necessary for preventive maintenance,
unexpected problems unforseen during
impact analysis.
Lack of tools providing technical support
(see previous tool taxonomy)
Lack of tools providing management
support (i.e., impact analysis, planning)

* Low quality product(s)
Loosely defined system requirements
Poor quality design, code of maintained
system
Poor quality system documentation
Poor quality user documentation

* Persounel-related issues
Lack of experience and/or training with
respect to the application domain
Lack of experience and/or training with
respect to the system requirements
(hardware, performance) and design
Lack of experience and/or training with
respect to the users’ operational needs and
constraints

In order to demonstrate the feasibility and usefulness of
the above approach, we present the following case
study.

3 A Case Study

This case study is intended to provide actual examples
and results of the change causal analysis process
described in previous sections. We first present the
maintained system used as a case study. Then, the
specific maintenance organization and process are
described in detail according to the template provided in
Section 2.1. Examples of change causal analyses are
shown and the lessons learned resulting from this
analysis process are presented.

3.1 System History and Description

GTDS is a 26 year old, 250 KLLOC, FORTRAN orbit
determination system. It is public domain software and,
as a consequence, has a very large group of users all
over the world. Usually, 1 or 2 releases are produced
every year in addition to mission specific versions that
do not go into configuration management right away
(but are integrated later on to a new version by going
through the standard release process). Like most
maintained software systems, very few of the original
developers are still present in the organization, but the
turnover of the maintenance team is low compared to
other maintenance organizations. However, turnover
still remains a crucial issue in this environment.

3.2 Modeling of the Maintenance
Organization and Processes

During the process of building a new release of GTDS,
different organizational entities interact in different
ways. By performing Step 1 of the characterization
process described in Section 2.1, two types of entities
and five types of interactions (i.e., differentiated
according to the purpose of the information flow) were
identified.

The entities, teams and groups, are represented
in Figure 2 by boxes and ellipses, respectively. Teams

10022514L

2.9

are persistent organizational structures; groups are
composed of members of several different teams, and
are dynamic entities in the-sense that they only exist
when group members meet. These groups have been
designed to facilitate communication between teams and
decision making.

In the five inmteraction types identified,
information was used for the following purposes:
decision - decision based on information provided;
review - review of documents; approval - approval of
documents or plans; transformation - supplied
information product is transformed into another
information product; and information - dissemination of
information.

Teams:

. Testers: they present acceptance test plans,
perform acceptance test and provide change requests to
the maintainers when necessary.

Owners / Users: they suggest, control and
appmve performed changes.

Product Assurance Organization (PAQO): They
control maintainers’ work, e.g., conformance to
standards, attend release meetings, audit delivery
packages. They have a different management from the
maintenance team.

Configuration Management (FDCM): They
integrate updates into the system. Coordinate the
production and release of versions of the system.
Provide tracking of change requests.

. Maintenance management: They grant
preliminary approvals of maintenance change requests
and release defnitions.

. Maintainers: They analyze changes, make
recommendations, perform changes, perform unit and
change validation testing after linking the modified
units to the existing system, perform validation and
regression testing after they get back the recompiled
system from the FDCM team.

Groups:

Software Management Planning Board
(SMPB) Their main goal is to address management
issues that run across maintenance projects. For
example, they help resolve conflicts between owners
and maintainers and review release planning documents.
Also, they allow task leaders and higher level managers
to exchange relevant information about the evolution of
their respective systems. However, SMPB has no
official function. The board is composed of the task
leader, section manager, department manager, and
operation manager.

GTDS
user's group

technical
suggestions

Information Flow Purpoee:

11: approval 15: review 19: transiormation 113: review 117: decision
i2 information {6: information 110: transforration 14: transformation 118: information
13: review 17: wansiormation 111: transtormation 115: review

14: information 18: decision 112: transformation 116: information

Figure 2: Information Flow within the Maintenance Organization

Configuration Control Board and
Conﬁguranon Management Office (CCB/CMO): They
are officially responsible for all changes to configured
software and the allocated budget. Their goal is to
ensure that the production of new releases is consistent
with the long-term goals of the organization. It is
composed of high-level managers.

GTDS user's group: It is a forum for
discussion of technical issues but has no official
function. It is composed of users, maintainers, and
testers.

The process described below represents our
understanding of the working process for a release of
GTDS and the mapping into standard generic activities.
This combines the information gained from Steps 2 and
3 of the characterization process. Phases, their
associated inputs/outputs and activities are presented
below. Activity acronyms are used as defined in Section
2.2. In this case, each phase milestone in a release is

100225141

2-10

represented by the discussion, approval and distribution
of a specific release document.

1. Change analysis

Input: change requests from software owner + priority
list

Output: Release Content Review (RCR) document
which contains change design analysis, prototyping,
and cost/benefit analysis that may result in a priority
change to be discussed with the software owner/user.
Activities: UNDR, 1A, CBA, CD, some CC, UT and
IT (for prototyping)

2. RCR meeting

Input: Release Content Review document proposed by
maintainers is discussed, i.e., change priority, content
of release.

Output: Updated Release Content Review document
Activities: AR, SA (QA engineers are reviewing the
release documents and attending the meeting)

3. Solution analysis

Input: Updated Release Content Review document
Output: devise technical solutions based on prototyping
analysis they performed in Step 1, Release Design
Review (RDR)

Activities: SC, CD, CC, UT, (preparation of test
strategy for) IT (based mainly on equivalence

partitioning)

4. RDR meeting

Input: RDR documentation

Output: approved (and possibly modified) RDR
documentation

Activities: review and discuss CC, UT, (plan for) IT,
SA

5. Change implementation and test

Inpur: RDR + prototype solutions (pbases 1, 3)
Output: changes are completed ; change validation test
is performed with new compiled components linked to
unchanged components of the current system version ;
regression testing is performed on the system
recompiled from scraich (provided by the FDCM team)
; a report with the purpose of demonstrating that the
system is ready for acceptance test is produced:
Acceptance test readiness review document (ATRR)
Activities: IT, RT, USD

6. ATRR meeting

Inpuz: Acceptance test readiness review document
Qutput: The changes are discussed and validated and the
used testing strategy is discussed. The acceptance test
team presents its acceptance testing plan.

Activities: review the current output of IT, SA

7. Acceptance test

Input: the new GTDS release and all release
documentation

Outputs: A list of Software Change requests (SCRs) is
provided to the maintainers. These changes correspond
to inconsistencies between the new release and the
general system requirements.

Activities: AT

Step 1, 2, and 3 required several iterations before there
was sufficient validation of the resulting
characterization of the organization, phases and
documents. As part of Step 2, for each of the standard
documents generated during the releases of GTDS
studied, we determine who produces it, who approves
it, and what additional relevant information and data
they contain. When doing so, we have to look for
possible inconsistencies between the organization
model (Step 1) and the identified producers/approvers of
the documents.

10022514L

2-11

» Document 1: Release Content Review (RCR):
Producer: maintenance team

Approvers: users, maintenance management, CCB
Content:

. change requirement description

. description of error (if any) that originated the change
. design of a prototype solution

. schedule, effort plans

. impact analysis assessment

» Document 2: Release Design Review (RDR):
Producer: maintenance team

Approvers: users, CCB

Content:

. identification of modified units

. a definitive solution is proposed

. rough cost/schedule estimates

. testing guidelines: mainly equivalence partitioning
classes

. definition of the test success criterion

* Document 3: Acceptance Test Readiness Review
(ATRR):
Producers: maintenance team, acceptance test team (test

plan)

Approvers: CCB, testers

Content:

. results of test cases and benchmarks (regression
testing)

. screen printouts, short reports

. Acceptance test plan

« Document 4: Delivery package:

Producer: maintenance team

Approvers: CCB

Content:

. cause of error (if any)

. effort breakdown: analysis, design, code, test

. # components examined, modified, added, deleted.
. # Locs modified, added, deleted

As specified in Step 4 of our process, we selected a
release for analysis. This release was quite recent, most
of the documentation identified in Step 2 was available,
and most importantly, the technical leader of the release
was available for additional insights and information.

Step 5 involved a causal analysis of the problems
observed during maintenance and acceptance test of the
releases studied. These problems were linked back to a
precise set of issues belonging to taxonomies presented
in Section 2.2. Figure 3 summarizes Step 5 as
instantiated for this case study.

. RCR,RDR, ATRR
.S/W
. User's guide

Analysis

Causal link

Figure 3: Causal Analysis in GTDS

In order to illustrate Step 5, we provide below
an example of causal analysis for one of the changes in
the selected release. Implementation of this change
resulted in 11 errors that were found by the acceptance
test team, 8 of which had to be corrected before final
delivery could be made. In addition, a substantial
amount of rework was necessary. Typically, changes do
not generate so many subsequent errors, but the flaws
that were present in this change are representative of
maintenance problems in GTDS. In the following
paragraphs, we discuss only two of the errors generated
by the change studied.

. Increased difficulty related to change (rework)

. Description: Initially, users requested an
enhancement to existing GTDS capabilities (change
642). The enhancement involved vector computations
performed over a given timespan. This enhancement
was considered quite significant by the maintainers, but
users failed to supply adequate requirements and did not
attend the RCR meeting. Users did not report their
dissatisfaction with the design until ATRR meeting
time, at which time requirements were rewritten and
maintainers had to perform rework on their
implementation. This change took a total of 3 months
to implement, of which at least 1 month was attributed
to several flaws in the process.

Maintenance process flaw(s): organizational: a
lack of clear definitions of the prerogatives/duties of
users with respect to release document reviews and
meetings (roles), and a lack of enforcement of the
release procedure (process conformance); maintenance
methodological flaw: ' incomplete, ambiguous
definitions of change requirements.

10022514L

2-12

. Errors caused by change 642

The implementation of the change itself resulted in an
error (A1044) found at the acceptance test phase. When
the correction to A1044 was tested, an error (A1062)
was found that could be traced back to both 642 and
Al044.

AlO44

. Description: Vector computations at the endpoints of
the timespan were not handled correctly. But in the
requirements it was not clear whether the endpoints
should be considered when implementing the solution.

. Error origin: change requirement analysis
. Error domain: ambiguous and
requirements

. Maintenance process flaw(s): organizational:
communication between users and maintainers, due in
part to a lack of defined standards for writing change
requirements; maintenance methodological flaw:
incomplete, ambiguous definitions of change
requirements.

incomplete

Al062

. Description: One of the system modules in which the
enhancement change was implemented has two
processing modes for data. These two modes are listed
in the user manual. When run in one of the two
possible processing modes, the enhancement generated
a set of errors, which were put under the heading
Al1062. At the phase these errors were found, the
enhancement had already successfully passed the tests
for the other processing mode. The maintainer should
have designed a solution to handle both modes
correctly.

. Error origin: change design analysis.

. Error domain: lack of application domain knowledge.

. Maintenance process flaw(s): personnel-related: lack of
experience and/or training with respect to the
application domain. .

The next section presents in detail the results of
performing Step 6.

3.3 Lessons Learned about the Studied
Maintenance Project

The lessons learned aré classified according to the
taxonomy of maintenance flaws defined in Section 2.2.
By performing an overall analysis of the change causal
analysis results (Step 6), we abstracted a set of issues
classified as follows:

Organization

. There is a large communication cost overhead
between maintainers and users, ¢.8., release standard
documentation, meetings, management forms. In an
effort to improve the communication between all the
participants of the maintenance process, non-technical,
communication-oriented activities have been
emphasized. At first glance, this seems to represent
about 40% (rough approximation) of the maintenance
effort. This figure seems excessive, especially when
considering the apparent communication problems
(next paragraph).

. Despite the number of release meetings and
documents, disagreements and misunderstandings seem
to disturb the maintenance process until late in the
release cycle. For example, design issues that should be
settled at the end of the RDR meeting kecp emerging
until acceptance testing is completed.

As a result, it seems that the administrative
process and organization scheme should be investigated
in order to optimize communication and sign-off
procedures, especially between users and maintainers.

Process

. The tools and methodologies used have been
developed by maintainers themselves and do not belong
to a standard package provided by the organization.
Some ad hoc technology transfer seems to take place in
order to compensate for the lack of a global, commonly
agreed upon strategy.

. The task leader has been involved in the
maintenance of GTDS for a number of years. His
expertise seems to compensate for the lack of system
documentation. He is also in charge of the training of
new personnel (some of the easy changes are used as an
opportunity for training). Thus, the process relies
heavily on the expertise of one or two persons.

. The fact that no historical database of changes
exists makes some changes very difficult. Maintainers
very often do not understand the semantics of a piece of

10022514L

2-13

code added in a previous correction. This seems to be
partly due to emergency patching (during a mission)
which was not controlled and cleaned up afterwards (this
has recently been addressed), a high turnover of
personnel and a lack of written requirements with
respect to performance, precision and platform
configuration constraints. ‘

. For many of the complex changes,
requirements are often ambiguous and incomplete, from
a maintainer's perspective. As a consequence,
requirements are often unstable until very late in the
release process. While prototyping might be necessary
for some of them, it is not recognized as such by the
users and maintainers. Moreover, there is no well
defined standard for expressing change requirements in a
way suitable to both maintainers and users.

Products

. System documentation (besides the user's
guide) is not fully maintained and not trusted by
maintainers. Source code is currently the only reliable
source of information used by maintainers.

. GTDS has a large number of users. As a
consequence, the requirements of this system are
complex with respect to the hardware configurations on
which the system must be able to run, the performance
and precision needs, etc. However, no requirement
analysis document is available and maintained in order
to help the maintainers devise optimal change
solutions.

. Because of budget constraints, there is no
document reliably defining the hardware and precision
requirements of the system. Considering the large
number of users and platforms on which the system
runs, and the rapid evolution of users' needs, this would
appear necessary in order to avoid confusion while
implementing changes.

People

. There is a lack of understanding of operational
needs and constraints by maintainers. Release meetings
were supposed to address such issues but they seem to
be inadequate in their current form.

. Users are mainly driven by short term
objectives which are aimed at satisfying particular
mission requirements. As a consequence, there is a very
limited long term strategy and budget for preventive
maintenance. Moreover, the long term evolution of the
system is not driven by a well defined strategy and
maintenance priorities are not clearly identified.

As a general set of recommendations and based
on the analysis presented in this paper, we suggest the
following set of actions:

. A standard (that may simply contain
guidelines and checklists) should be set up for change

requirements. Both users and maintainers should give
their input with respect to the content of this standard.

. The conformance to the defined release process
should be improved, e.g., through team building,
training. In other words, the release documents and
meetings should more effectively play their specified
role in the process, e.g., the RDR meeting should
settle all design disagreements and inconsistencies.

. The parts of the system that are often changed
and highly convoluted (as a result of numerous
modifications) should be redesigned and documented for
more productive and reliable maintenance. Technical
task leaders should be able to point out the sensitive
system units.

4 Conclusion

Characterizing and understanding software maintenance
processes and organizations are necessary, if effective
management decisions are to be made and if adequate
resource allocation is to be provided. Also, in order to
plan and efficiently organize a measurement program—
a necessary step towards process improvement
[BR88]—, we need to better characterize the
maintenance environment and its related issues. The
difficulty of performing such a characterization stems
from the fact that the people involved in the
maintenance process, who have the necessary
information and knowledge, cannot perform it because
of their inherently biased perspective on the issues.
Therefore, a well defined characterization process, which
is cost-effective, objective, and applicable by outsiders,
needs to be devised.

In this paper, we have presented such an
empirically refined characterization process which has
allowed us to gain an in-depth understanding of the
maintenance issues involved in a particular project, the
GTDS project. We have been able to gather objective
information on which we can base management and
technical decisions about the maintenance process and
organization. Moreover, this process is general enough
to be followed in most of the maintenance
organizations.

However, such a qualitative analysis is a priori
limited since it does not allow us to quantify precisely
the impact of various organizational, technical, and
process related factors on maintenance cost and quality.
Thus, the planning of the release is sometimes
arbitrary, monitoring its progress is extremely difficult,
and its evaluation remains subjective,

Hence, there is a need for a data collection
program for GTDS and across all the maintenance
projects of our organization. In order to reach such an
objective, we will base the design of such a
measurement program on the results provided by this
study. In addition, we need to model more rigorously
the maintenance organization and processes so that
precise evaluation criteria can be defined [SBS4].

10022514L

This approach will be used to analyze several
other maintenance projects in the NASA-SEL in order
to better understand project similarities and differences
in this environment. Thus, we will be able to build
better models of the various classes of maintenance

projects.
Acknowledgments

We are grateful to Steve Condon, Walcelioc Melo,
Carolyn Seaman, Barbara Swain and Jon Valett for
reviewing early drafts of this paper. We also would like
to thank Amy Bleich for helping us to analyze the
release documents.

References

[BC91] K. Bennett, B. Cornelius, M. Munro, D.
Robson, "Software Maintenance”, Software
Engineering Reference Book, Chapter 20, Butterworth-
Heinemann Ltd, 1991

[(BR88] V. Basili and H. Rombach,"The TAME
Project: Towards Improvement-Oriented Software
Environments”, IEEE Trans. Software Eng., 14 (6),
June, 1988.

[C88] N. Chapin, " The Software Maintenance Life-
Cycle", CSM'88, Phoenix, Arizona, 1988.

[HA93] C. Hartzman, C. Austin, "Maintenance
Productivity: Observations Based on an Experience in a

" Large System Environment”, CASCON'93, Toronto,

Canada, 1993

[HV92] M. Hariza, J.F. Voidrot, E. Minor, L.
Pofelski, and S. Blazy, "Software Maintenance: An
analysis of Industrial Needs and Constraints", CSM'92,
Orlando, Florida.

[P94] D. Parnas, "Software Aging”, ICSE 16th,
May 1994, Sorrento, Italy.

[RUV92] D. Rombach, B. Ulery and J. Valett,
"Toward Full Cycle Control: Adding Maintenance
Measurement to the SEL", Journal of systems and
software, May 1992,

[SB94] C. Seaman, V. Basili, "OPT: An Approach to
Organizational and Process Improvement”, AAAI 1994
Spring Symposium Series, Stanford University, March
1994,

[S892] A, Shelly, E. Sibert, "Qualitative Analysis: A
Cyclical Process Assisted by Computer”, Qualitative
Analysis, pp 71-114, Oldenbourg Verlag, Munich,
Vienna, 1992

Defining and Validating High-Level Design
Metrics:

Lionel Briand*, Sandro Morasca**, Victor R. Basili*

* Computer Science Department
University of Maryland, College Park, MD, 20742
{lionel, basili}@cs.umd.edu

** Dipartimento di Elettronica e Informazione
Politecnico di Milano
Piazza Leonardo da Vinci 32, 1-20133 Milano, Italy
morasca@elet.polimi.it

Abstract

The availability of significant metrics in the early phases of the software development
process allows for a better management of the later phases, and a more effective quality
assessment when software quality can still be easily affected by preventive or corrective
actions. In this paper, we introduce and compare four strategies for defining high-level
design metrics. They are based on different sets of assumptions (about the design process)
related to a well defined experimental goal they help reach: identify error-prone software
parts. In particular, we define ratio-scale metrics for cohesion and coupling that show
interesting properties. An in-depth experimental validation, conducted on large scale
projects demonstrates the usefulness of the metrics we define.

1 Introduction

Software metrics can help address the most critical issues in software development and
provide support for planning, predicting, monitoring, controlling, and evaluating the
quality of both software products and processes [BR88, F91]. Most existing software
metrics attempt to capture characteristics of software code [F91]; however, software code is
just one of the artifacts produced during software development, and, moreover, it is only
available at a late stage. It is widely recognized that the production of better software
requires the improvement of the early development phases and the artifacts they produce:

1 This work was supported in part by NASA grant NSG-5123, UMIACS, and NSF grant 01-5-24845.
Sandro Morasca was also supported by grants from MURST and CNR.

10022514L 2-15

The production of better specifications and better designs reduces the need for extensive
review, modification, and rewriting not only of code, but of specifications and designs as
well. As a result, this allows the software organization to save time, cut production costs,
and raise the final product's quality.

Early availability of metrics is a key factor to a successful management of software
development, since it allows for

» carly detection of problems in the artifacts produced in the initial phases of the life-
cycle (specification and design documents) and, therefore, reduction of the cost of
change—late identification and correction of problems are much more costly than
early ones;

* better software quality monitoring from the early phases of the life-cycle;

* quantitative comparison of techniques and empirical refinement of the processes to
which they are applied;

* more accurate planning of resource allocation, based upon the predicted error-
proneness of the system and its constituent parts.

In this paper, we will focus on high-level design metrics for software systems. A number
of studies have been published on software design metrics in recent years. It has been
shown that system architecture has an impact on maintainability and error-proneness
[HK84, G86, R87, R90, S90, SB91, Z91, AE92, BTH93, BBH93]. These studies have
attempted to capture the design characteristics affecting the ease of maintaining and
debugging a software system. Most of the design metrics are based on information flow
between subroutines or declaration counts. We think that, even though it provides an
interesting insight into the program structure, this should not be the only strategy to be
investigated, since many other types of program features and relationships are a priori
worth studying. Moreover, there is a need for comparison between strategies in order to
identify worthwhile research directions and build accurate prediction models.

Besides this focus on information flow, most of the existing approaches share two
common characteristics. (1) They define metrics without making clear assumptions about
the contexts (i.e., processes, problem domain, environmental factors, etc.) in which they
can be applied (with the exception of [AE92], where this issue was partially addressed).
This implies they should have general validity, and be applicable to different environments
and problem domains. (2) There are not fully explicit goals, for whose achievement the
metrics are defined. This may cause problems in their application, since they may be
defined based on implicit assumptions which the context may not satisfy; interpretation,

10022514L 2-16

since their meaning is not clear; and validation [IS88, K88], since their relevance with
respect to a clearly stated goal is not established.

The definition of universal metrics (like in physical sciences) is an acceptable long-
term goal, which, however, is only achievable after we gain better insights into specific
processes from specific perspectives in the short term. It is our opinion that the definition
of a metric should be driven by both the characteristics of the context or family of contexts
in which it is used, and one or more clearly stated goals that it helps reach. In other words,
the assumptions underlying the defined metrics should rely on a deep knowledge of the
context and should be precisely related to a stated goal. After this, the defined metrics must
undergo a thorough experimental validation, to assess their significance and usefulness
with respect to the stated goals. Last, based on the experimental evidence, metrics may be
refined and modified, to better achieve the goals and comply with the process
characteristics.

The goal of the research documented in this paper is to define and validate a set of
high-level design metrics to evaluate the quality of the high-level design of a software
system with respect to its error-proneness, understand what high-level design
characteristics are likely to make software error-prone, and predict the error-proneness of
the code produced. .

We introduce four families of metrics, which are based on different types of
mathematical abstractions of program designs [MGBB90]. In particular, we introduce a
family of metrics based on data declaration dependency links (Section 2.2.4). This strategy
allows us to introduce metrics for cohesion (Section 2.2.4.1) and coupling (Section
2.2.4.2) [F91] that are characterized by interesting properties and are based on consistent
principles. Such a consistency is important because it should facilitate future research on
quantitative tradeoff mechanisms between coupling and cohesion, i.e., variations can be
expressed using consistent measurement units. Other metric families include: metrics based
on declaration counts (Section 2.2.1), metrics based on the USES relationships between
modules [GIM92] (Section 2.2.2), and metrics based on the IS_COMPONENT_OF
relationships [GIM92] (Section 2.2.3).

In addition, we experimentally compare and validate the metrics introduced in
Section 2 on three NASA projects. The results are shown in Section 3. In Section 4, we
summarize the lessons we have leamed, and outline directions for future research activities
based on these lessons.

10022514L 2-17

2 Defining Metrics for High-level Design

In this section, we first introduce the basic concepts of high-level design and the
terminology we will use in the paper (Section 2.1). We then define, based on the goals
stated in Section 1 and context assumptions, four families of high-level design metrics
(Section 2.2).

2.1 Basic Definitions

Our object of study is the high-level design of a software system. To define it, we will start
from its elementary constituents: software modules.

In the literature, there are two commonly accepted definitions of modules. The first
one sees a module as a routine, either procedural or functional, and has been used in most
of the design measurement publications [M77, CY79, HK84, R87, S90]. The second
definition, which takes an object-oriented perspective, sees a2 module as a collection of
type, data, and subroutine definitions, i.e., a provider of computational services [BO87,
GIM92]. In this view, a module is the implementation of an Abstract Data Type / Object. In
this paper, unless otherwise specified, we will use the term subroutine for the first
category, and reserve the term module for the second category. Modules are composed of
two parts: interface and body (which may be empty). The interface contains the
computational resources that the module makes visible for use to other modules. The body
contains the implementation details that are not to be exported.

At a higher level of abstraction, modules can be seen as the components of higher
level aggregations, as defined below.

Definition 1: Library Module Hierarchy (LMH).
A library module hierarchy is a hierarchy where nodes are modules and subroutines, arcs
between modules are IS_COMPONENT_OF [GIM92] relationships, and there is just one
top level node, which is a module.
0

In the remainder of this paper, we will define concepts and metrics that can be applied to
both modules and LMHs, which are the most significant syntactic aggregation levels below
the subsystem level. For short, we will use the term software part (sp) to denote either a
module or an LMH.

In the high-level design phase of a software system, only module and subroutine
interfaces and their relationships are defined—module body and subroutine detail design is

10022514L 2-18

carried out at low-level design time. Therefore, we define the high-level design of a
software system as follows.

Definition 2: High-level Design

The high-level design of a software system is a collection of module and subroutine
interfaces related to each other by means of USES [GIM92] and IS_COMPONENT_OF
relationships. No body information is yet available at this stage.

2.2 Strategies to Define High-level Design Metrics

In this section, we investigate several strategies for defining high-level design metrics. This
appears necessary at this stage of knowledge, where we can only rely on very limited
theoretical and empirical ground to help us identify interesting concepts, relationships and
objects of study. One of the results of this investigation is to provide directions to focus our
research on a smaller set of strategies and concepts.

Some of the concepts introduced in this section cannot be directly mapped onto all
imperative languages, because not all of them allow the implementation of Abstract Data
Types/Objects. However, these concepts are shared by many modem programming
languages.

As we said in the Introduction, context assumptions are necessary to define metrics
that are applicable and useful. Therefore, we list a context assumption for each of the
metrics of the four strategies we introduce below. We do not assume that all of these
process assumptions are equally important, i.e., not all of the process characteristics we
take into account have an equal impact on software error-proneness.

2.2.1 Declaration Counts

These metrics are counts of data declarations, associated with a software part, that are
imported, exported or declared locally.

Metric 1: Local.
Local(sp) will denote the number of locally defined data declarations of a software part sp.

10022514L 2-19

Assumption A-LO.

The count of declarations of a software part may be seen as a measure of size, which is
known to be associated with errors, i.e, the larger the set of declarations, the more likely
the errors.

Metric 2: Global.
Global(sp) will denote the number of external data declarations visible from a software part

sp.

Assumption A-GL.
The larger the number of external declarations visible in a software part, the larger the
number of external concepts to be understood and used consistently, the higher the
likelihood of error.

Metric 3: Scope.
Scope(sp) will denote the number of external data declarations for which the data

declarations of a software part sp are visible.

Assumption A-SC.

The larger the number of data declarations in the scope of the software part, the larger the
number of contexts of use, the more likely it is to be inadequate to fulfill the needs of the
declarations in the scope.

2.2.2 Metrics Based on the USES Relationships

These metrics capture the dependencies between software parts based on the USES
relationships of the system.

Metric 4: Imported Software Parts.
ISP(sp) will denote the number of software parts imported and used by a software part sp.

10022514L 2-20

Assumption A-ISP.
The larger the number of used external software parts, the larger the context to be
understood, the more likely the occurrence of an error.

Metric 5: Exported Software Parts.
ESP(sp) will denote the number of software parts that use a software part sp.

Assumption A-ESP.
The larger the number of contexts of use of a software part, the larger the number of
services it provides, the more flexible it must be, and, as a consequence, the more likely the
occurrence of error.

2.2.3 Metrics Based on the IS_COMPONENT_OF Relationships

These metrics capture information about the structure of the IS_COMPONENT_OF graph.

Metric 6: Maximum/Average Depth.
Max_Depth(sp) / Avg_Depth(sp) will denote the maximum/average depth of the nodes

composing a software part sp.

Assumption A-M/A.
The larger the depth of a hierarchy, the larger the context information to be known in the
lower nodes, the more likely the occurrence of error.

Metric 7: Number of paths.
No_Paths(sp) will denote the number of complete paths (from root to leaf) within a a

software part sp.

Assumption A-NOP.

The larger the number of paths, the larger the number of parent, sibling, and child
relationships to be dealt with, the larger the complexity of the hierarchy, the higher the
likelihood of error occurrence.

10022514L 2-21

2.2.4 Interaction-Based Metrics

In this section, we focus specifically on the dependencies that can propagate inconsistencies
from data declarations to data declarations or subroutines when a new software part is
integrated in a system. Those relationships will be called interactions and will be used to
define metrics capturing cohesion and coupling within and between software parts,
respectively. (Interactions linking subroutines to subroutines or data declarations will not
be considered because they are, in the vast majority of cases, encapsulated in module or
routine bodies and are therefore not detectable in our framework, which only takes into
account high-level design.)

Definition 3: Data declaration-Data declaration (DD) Interaction.
A data declaration A DD-interacts with another data declaration B if a change in A's
declaration or use may cause the need for a change in B's declaration or use.

¢
The DD-interaction relationship is transitive. If A DD-interacts with B, and B DD-interacts
with C, then a change in A may cause a change in C, i.e., A DD-interacts with C. Data
declarations can DD-interact with each other regardless of their location in the designed
system. Therefore, the DD-interaction relationship can link data declarations belonging to
the same software part or to different software parts.

The DD-interaction relationships can be defined in terms of the basic relationships
between data declarations allowed by the language, which represent direct DD-interactions
(i-e., not obtained by virtue of the transitivity of interaction relationships). Data declaration
A directly DD-interacts with data declaration B if A is used in B's declaration or in a
statement where B is assigned a value. As a consequence, as bodies are not available at
high-level design time, we will only consider interactions detectable from the interfaces.

DD-interactions provide a means to represent the dependency relationships between
individual data declarations. Yet, DD-interactions per se are not able to capture the
relationships between individual data declarations and subroutines, which are useful to
understand whether data declarations and subroutines are related to each other and therefore
should be encapsulated into the same module (see Section 2.2.4.1 on cohesion).

Definition 4: Data declaration-Subroutine (DS) Interaction.

A data declaration DS-interacts with a subroutine if it DD-interacts with at least one of its
data declarations.

10022514L 2-22

Whenever a data declaration DD-interacts with at least one of the data declarations contained
in a subroutine interface, the DS-interaction relationship between the data declaration and
the subroutine can be detected by examining the high-level design. For instance, from the
Ada-like code fragment in Figure 1, it is apparent that both type 77 and object OBJECT11
DS-interact with procedure SR11, since they both DD-interact with parameter PARII,
procedure SRI!'s interface data declaration. '

package M1 is

;;pe Tlis ...;
OBJECT11, OBJECT12: T1;
procedure SR11(PAR11: in T1:=OBJECT11);

i:;ckage M2 is
OBJECT13: T1;
type T2 is array (1..100) of T1;

OBJECT21: T2;
procedure SR21(PAR21: in out T2);

end M.Z.;-
OBJECT22: M2.T2;

en.é. M1;
Figure 1. Program fragment

For graphical convenience, both sets of interaction relationships will be represented by
directed graphs, the DD-interaction graph, and the DS-interaction graph, respectively. In
both graphs (see Figure 2, which shows DD- and DS-interaction graphs for the code
fragment of Figure 1), data declarations are represented by rounded nodes, subroutines by
thick lined boxes, modules by thin lined boxes, and interactions by arcs.

Next, we will define high-level design metrics for cohesion and coupling, based on the
above definitions. It is generally acknowledged that system architecture should have low
coupling and high cohesion [CY79]. This is assumed to improve the capability of a system
to be decomposed in highly independent and easy to understand pieces. However, the
reader should bear in mind that high cohesion and low coupling may be conflicting goals,
i.e., a trade-off between the two may exist. For instance, a software system can be made of
small modules with a high degree of internal cohesion but very closely related to each other
and, therefore, with a high level of coupling. Conversely, a software system can be
composed of few large modules, representing its subsystems, loosely related to one
another, i.e., with low coupling, but with a low degree of intemnal cohesion as well.

10022514L 2-23

| =5 _
= L:MJ

L&
@

®)

Figure 2. DD-interaction (a) and DS-interaction (b) graphs for the program fragment in
Figure 1

Moreover, high cohesion and low coupling are not the only factors to be taken into account
when designing a software system. Other issues (e.g., potential reuse) must be taken into
account as well. :

2.2.4.1 Cohesion

Cohesion captures the extent to which, in a software part, each group of data declarations
and subroutines that are conceptually related belong to the same module. Based on

* an assumption (A-CH), which provides the rationale to define cohesion metrics;

» the concept of cohesive interactions, i.e., those interactions which contribute to
cohesion;

* a set of properties (Properties 1-3) that cohesion metrics must have in order to
measure cohesion

we now introduce a set of metrics (Metrics 8-11) to measure the degree of cohesion of a
software part.

Assumption A-CH:

A high degree of cohesion is desirable because information related to declaration and
subroutine dependencies should not be scattered across the system and among irrelevant

10022514L 224

information. Data declarations and subroutines which are not related to each other should
be encapsulated to the extent possible into different modules. As a result of such a strategy,
we expect the software parts to be less error-prone.

¢
Consistently with the definition of Abstract Data Type/Object, data declarations and
subroutines should show some kind of interaction between them, if they are conceptually
related. Therefore, we are interested in evaluating the tightness of the interactions between
the data declarations and data declarations or subroutines declared in a module interface.
We will capture this by means of cohesive interactions.

Definition 5: Cohesive Interaction.
The set of cohesive interactions in a module m, denoted by ClI(m), is the union of the sets
of DS-interactions and DD-interactions, with the exception of those DD-interactions
between a data declaration and a subroutine formal parameter.

Y
We do not consider the DD-interactions linking a data declaration to a subroutine parameter
as relevant to cohesion, since they are already accounted for by DS-interactions and we are
interested in evaluating the degree of cohesion between data declarations and routines seen
as a whole. Furthermore, cohesive interactions occur between data declarations and
subroutines belonging to the same module. Interactions across different modules are not
considered cohesive, since cohesion is the extent to which data declarations and
subroutines that are conceptually related belong to the same module. Interactions across
different modules contribute to coupling. Therefore, given a software part sp, the sets of
cohesive interactions of its constituent modules (if any) are disjoint.

Remark.
It is worth reminding the reader that those relationships that cannot be detected by

inspecting the interfaces, i.e., global variables interacting with subroutine bodies, can
actually be quite relevant to cohesion evaluation, because they often represent the
connections between an object and the subroutines that manipulate it. This issue will be

further discussed later in this section.

10022514L 2-25

We base our cohesion metrics for software parts on cohesive interactions. Before defining
them, we introduce the following three properties that they must satisfy in order to match
our assumptionsl.

Property 1: Normalization.
Given a software part sp, the metric cohesion(sp) belongs to a specified interval [0,Max],
and cohesion(sp) = 0 if and only if CI(sp) is empty, and cohesion(sp) = Max if and only if
Cl(sp) includes all possible cohesive interactions.

0
Normalization allows meaningful comparisons between the cohesions of different software
parts, since they all belong to the same interval, and the extreme values of the cohesion
range must represent the extreme cases. We will denote by M(sp) the maximal set of
cohesive interactions of the software part sp, i.e., the set that includes all of sp's possible
cohesive interactions, obtained by linking every data declaration to every other data
declaration and subroutine with which it can interact. Some care must be used in defining
M(sp) for languages that allow circular type definitions, such as the ones used to define the
nodes of a linked list. In this case, the declarations of two types T1 and T2 are built in such
a way that T1 interacts with T2 and T2 interacts with T1. We choose to count only one
interaction between them. This is explained by the fact that a single interaction between two
data declarations justifies their encapsulation in a single module/Abstract Data Type.

Property 2: Monotonicity.

Let sp] be a software part and CI(sp]) its set of cohesive interactions. If sp? is a modified
version of spj with the same sets of data and subroutine declarations and one more
cohesive interaction so that CI(sp2) includes CI(sp}), then cohesion(sp2) 2 cohesion(sp]).
' Y
Adding cohesive interactions to a a software part cannot decrease its cohesion.

Property 3: Cohesive Modules.
Let sp be a software part, and let m] and m2 be two of its modules. Let sp’ be the software
part obtained from sp by merging the declarations belonging to m] and m2 into a new
module m. If no cohesive interactions exist between the declarations belonging to m] and
m2 when they are grouped in m, then cohesion(sp) > cohesion(sp’) .

¢

1Properties and metrics can be defined for module sets more general than software parts. However, for
simplicity, we will provide them only for software parts.

10022514L 2-26

Splitting two sets of declarations which are not related to each other via cohesive
interactions into two separate modules cannot decrease the cohesion of the software part.
Based on the properties defined above, we introduce a cohesion metric for software

parts.

Metric 8: Ratio of Cohesive Interactions (RCI) for a Software Part.
The Ratio of Cohesive Interactions for sp is

RCI(sp)r%s%l *)

It is straightforward to prove that RCI(sp) satisfies the above properties 1-3, and that,
based on properties 1-3, it is defined on a ratio scale [F91]. Furthermore, RCI(sp) can also
be computed as a weighted sum of the RCI(m)'s of the single modules m belonging to sp.
From Formula (¥*), since cohesive interactions only occur within modules, but not across

modules

ICI(sp)l = YICI(m)l

m € sp
M(sp)l = M)
neE sp
SO
_ ICI(m)!
RCI(sp) > M)

By multiplying and dividing each term in the summation by IM(m)l, we obtain

~ M) ICI(m)l _ M(m)l
RCl(sp)= TM@) M@m) - s M@ I
me sp ¢ 5P me spg € SP

The weights represent the potential contribution of each module m belonging to the
software part sp to the cohesion of the whole sp.

10022514L 2-27

Figure 3 shows an example of cohesion computation for a single module. T denotes
a type declaration, C a variable declaration, and SR1, SR2, and SR3 subroutine
declarations.

RCI=47=0.571
Figure 3. Cohesion example

Based on the above cohesion metric, we can define a threshold for deciding whether a set
of data and subroutines should be kept in one single module or divided into two or more
modules. For simplicity, we will show here only the case in which we have to decide
whether the declarations belonging to a module m should be split into two modules m} and
m2. This should be the case if the cohesion of the software part consisting of the two
modules m] and m is greater than the cohesion of module m, i.e.,

ICl@m DH+CIm2)l _ ICKm)HCIm)H+Clpol
M@mpD+Mm2) > M(m)]

where ICI12l is the number of cohesive interactions between the declarations belonging to
modules m] and m2 when they are in module m. Based on the above inequality, we can

define a threshold on ICI;l, as follows

(M(m)-M(mp-M(m)) (CKmPHCKm)) (o~
MGy)+HM(m;)! 12

We want to emphasize, however, that, since cohesion is not the only characteristic relevant

to software design, its increase should not be used as the only criterion on which to base
such a decision.

100225141 2-28

The Role of Additional Information
Additional information to what is visible in the interfaces may be available at the end of
high-level design. For instance, given the interface of a module m, the designers have at
least a rough idea of which objects declared in m will be manipulated by a subroutine in
m's interface. It will be left to the person responsible for the metric program to decide
whether or not it is worth collecting this kind of information, thus making the designer
describe which objects will be accessed by which subroutines. Formatted comments may
be a convenient way of conveying this information through module interfaces and therefore
of automating the collection of this type of information.

For instance, from the code fragment in Figure 1, we cannot tell whether
OBJECTI2 DS-interacts (as a global variable) with subroutine SRI1. In this case,
designers can answer in three different ways:

(1) OBJECTI2 DS-interact with P11
2) OBJECTI?2 does not DS-interact with P11
3) the information they have is not sufficient

It is worth saying that answers of kind (2) provide valuable, though negative, information
on the DS-interactions present in a system. For instance, in the code fragment on Figure 1,
the designer may indicate the existence of a DD-interaction between object OBJECTI2 and
PARI11 and the lack of interaction between OBJECTI3 and PAR21. As a consequence, the
computation of cohesion is affected. If we take into account this additional information,
other alternative cohesion metrics can be defined.

Given a software part sp, and a pair <A,B>, where A is a data declaration and B is
either a data declaration or a subroutine, we will say that the interaction between them is
known if it is detectable from the high-level design or is signaled by the designers (they
provide an answer similar to answer (1) above); we will say that the interaction between
them is unknown if it is not detectable from the high-level design and is not signaled by the
designers (they provide an answer similar to answer (1) above).

The set of known interactions of a software part sp will be denoted by K(sp), and
the set of unknown interactions by U(sp). In general, IM(sp)! 2 IK(sp)| + 1U(sp)), since
some interactions are not detectable from the high-level design and the designers explicitly
exclude their existence.

10022514L 2-29

Metric 9: Neutral Ratio of Cohesive Interactions (NRCI).
Unknown Cls are not taken into account

lK(§2)I
NRCIGP)=R1tp) UGN

Metric 10: Pessimistic Ratio of Cohesive Interactions (PRCI).
Unknown CIs are considered as if they were known not to be actual interactions.

PRCI(sp) = %(é%

(This is equivalent to RCI(sp).)

Metric 11: Optimistic Ratio of Cohesive Interactions (ORCI).
Unknown CIs are considered as if they where known to be actual interactions

ORCI(SP):lK(spﬂzll1 (:pl}ll(sp)l

The above three metrics satisfy Properties 1-3, where Cl(sp) is replaced by
K(sp) v U(sp).

If PRCI(sp), NRCI(sp), and ORCI(sp) are all not undefined, it can be shown that,
for all software parts sp,

0<PRCI(sp) < NRCI(sp) < ORCI(sp)<1

ORCI(sp) and PRCI(sp) provide the bounds of the admissible range for cohesion, and
NRClI(sp) takes a value in between. It can also be shown that the smaller the number of
unknown interactions, the smaller the interval [PRCI, ORCI], i.e., the more complete the
information, the narrower the uncertainty interval. It should be noted that, once the low-

10022514L 2-30

level design is completed, accurate and complete information about cohesive interactions
should be available.

Remark. -

NRCI(sp) is undefined if and only if all interactions are unknown, i.e., no information is
available on cohesive interactions. It is interesting to notice that in this case, and only in this
case, PRCI(sp) = 0 and ORCI(sp) = 1, ie., PRCI(sp) and ORCI(sp) do not provide
stricter bounds than the ones provided by the interval for cohesion. The fact that NRCI(sp)
is undefined can be interpreted as the possibility that NRCI(sp) can take any value in the
interval [0,1].

2.2.4.2 Coupling

In this section, we first give general definitions and assumptions on coupling, then, we
present a set of metrics, and discuss the issue of genericity in the context of coupling. To
address the particular issue of coupling, we will refer to the import interactions of a module
m as all interactions going from a declaration outside m to a declaration inside m. Similarly,
we define export interactions as going from a declaration located inside m to a declaration

outside m.

Assumption A-IC:

The more dependent a software part on external data declarations, the more external
information needs to be known in order to make the software part consistent with the rest
of the system. In other words, the larger the amount of external data declarations, the more
incomplete the local description of the software part interface, the more spread the
information necessary to integrate a software part in a system. Thus, the software part

becomes more error-prone.

Definition 6: Import Coupling of a software part (IC).
Import Coupling is the extent to which a software part depends on imported external data
declarations.

10022514L 2-31

Assumption A-EC:

Export coupling is related to how a software part is used in the system. The more often the
software part is used, the larger the number of services it has to provide, the more flexible
it needs to be, e.g., generic module. This may lead to errors.

Definition 7: Export Coupling of a sofiware part (EC).
Export coupling is the extent to which the data declarations of a software part affect the data

declarations of the other software parts in the system.
0

Import and export coupling of a software part will be expressed in terms of the actual DD-
interactions involving imported external data declarations and the internal data declarations
of the software part. We now provide properties that must be satisfied by both import and
export coupling metrics.

Property 4: Non negativity

Given a software part sp, the metric import_coupling(sp) 2 0 (resp. export_coupling(sp) =
0). import_coupling(sp) = 0 (resp. export_coupling(sp) = 0) if and only if sp does not have
import (resp. export) interactions with other software parts.

Property 5: Monotonicity
Let m] be a module and 7I(m]) (resp. EI{m])) its set of import (resp. export) interactions.
If m2 is a modified version of m] with the same sets of data and subroutine declarations
and one more import (resp. export) interaction so that I7(m2) (resp. EI{m2)) includes
II(m2) (resp. EI(m2)), then import_coupling(m2) 2 import_coupling(mj) (resp.
export_coupling(m2) 2 export_coupling(m])).

¢
Adding import (resp. export) interactions to a module cannot decrease its import (resp.
export) coupling.

Property 6: Merging of Modules

The sum of the couplings of two modules is no less than the coupling of the module which

is composed of the data declarations of the two modules. '
0

10022514L 2-32

This stems from the fact that two modules may contain interactions between each other's
declarations, which are no longer import or export interactions for the module resulting
from merging the original modules. .

It should be noted that, as opposed to cohesion, coupling is not a normalized
metric. This comes from assumptions A-CH, A-IC, and A-EC (see Sections 2.2.4.1 and
2.2.4.2), where we state that cohesion is a degree of interdependence within a software
part, whereas coupling is a quantity of dependencies between a software part and the rest of
the system.

We will now introduce interaction-based coupling metrics. The issue will be first
addressed by ignoring generic modules for the sake of simplification. Generic modules and
their impact on the defined metrics will be treated later in this section.

Metric 12: Import Coupling
Given a software part sp, Import Coupling of sp (denoted by IC(sp)) is the number of DD-
interactions between data declarations external to sp and the data declarations within sp.

Metric 13: Export Coupling
Given a software part sp, Export Coupling of sp (denoted by EC(sp)) is the number of DD-
interactions between the data declarations within sp and the data declarations external to sp.

It is straightforward to prove that IC(sp) and EC{(sp) satisfy the above properties 4-6, and
that, based on properties 4-6, these metrics are defined on a ratio scale [F91].

Each box in Figure 4 represents a module interface. Module interfaces m2 and m3
are located in their parent's interface m1. m2 is assumed to be declared before m3 and
therefore visible to m3. Tij and OBJECTIj data declarations represent respectively types and
objects in module mi. FP3 represents a subroutine formal parameter. The IC and EC values

for the modules in Figure 4 are computed as follows.

IC(m1)=0 EC(m1) =10
IC(m2) =4 EC(m2)=1
IC(m3) =5 EC(m3)=0
IC(m4) =2 EC(m4)=0

In the example of Figure 4, we see that m1 expectedly shows the largest export coupling.

10022514L 2-33

Figure 4. Calculation of IC and EC with non-generic modules only

Based on the definitions of /C(sp) and EC(sp), we derive four related metrics, DIC(sp)
(Direct Import Coupling), 77C(sp) (Transitive Import Coupling), DEC(sp) (Direct Export
Coupling), TEC(sp) (Transitive Export Coupling). DIC(sp) and DEC(sp) only take into
account direct interactions, whereas 77C(sp) and TEC(sp) only take into account transitive
interactions. By their definitions, IC(sp) = DIC(sp) + TIC(sp), and
EC(sp) = DEC(sp) + TEC(sp). This allows us to separately evaluate the impact of direct
and transitive interactions on error-proneness, as we show in the experimental validation.
In practice, the number of transitive interactions turns out to be much bigger than that of
direct interactions, so IC(sp) = TIC(sp) and EC(sp) = TEC(sp).

The Treatment of Generic Modules

There are two possible ways of taking into account generics when calculating coupling.
Either each instance can be seen as a different module or a generic can be seen as any other
module whose scope/global data declarations is/are the union of the scope/global data
declarations of its instances. The second solution does not consider instances as
independent modules and appears to be more suitable to our specific perspective, since
errors are to be found in generics and, only as a consequence, in instances.

The import coupling of a generic module is the cardinality of the union of the sets of
DD-interactions between the data declarations in the software system and those of each of
its instances. When calculating export coupling, we take into account the DD-interactions
between the data declarations of each of its instances and those of the software system.
Consistent with the definition of DD-interaction, generic formal parameters DD-interact

10022514L 2-34

with their particular generic actual parameters (i.e. type, object) when the generic module is
instantiated, since a change in the former may imply a change in the latter.

This is what the example in Figure 5 illustrates. Gen_m is the interface of a generic
module, with a generic formal parameter GenFP and a generic type GenT. The export
coupling of module Gen_m is given by the sum of three parts

e two interactions from Gen_m to ml, due to the two instantiations, Gen_m(1) and
Gen_m(2), of Gen_m in ml,

¢ the interaction from the instantiation Gen_m(1)

e the two interactions from the instantiation Gen_m(2).

IC(ml1)=2 EC(ml)=4
IC(m2)=3 EC(m2)=0
IC(m3)=4 ECm3)=0
IC(Gen_m)=0 EC(Gen_m)=5

Figure 5. Generics when calculating coupling

10022514L 2-35

3 Experimental Validation
The experimental validation has two main goals.

Goal 1
We want to find out which of the metrics defined above have a significant impact on the
error-proneness of software parts. This allows us to

a. prove that high-level design information can be used to build significant indicators
of software error-proneness

b. determine which of our assumptions about the development process (Section 2) are
experimentally supported

c. compare the four strategies for defining high-level design metrics

d. identify the most promising research directions.

Goal 2
‘We need to investigate dependencies between metrics, in order to determine which ones are
complementary, and can be used in combination, and which ones capture similar

phenomena.
¢

Section 3.1 presents the experimental design of the analysis, the project data sets used and
the tool built to capture the discussed design metrics. Section 3.2 provides and discusses
the results of a univariate analysis of the metrics. The significance of the metrics as
predictors of error-prone software parts is assessed and the differences between systems
are investigated. Section 3.3 investigates the results obtained when building multivariate
classification models for detecting error-prone LMHs based on significant design metrics.
The model results are assessed and the model functional structure is investigated.

.3.1 Experiment Design

Experiment Layout

In order to validate software measurement assumptions experimentally, one can adopt two
main strategies: (1) small-scale controlled experiments, (2) real-scale industrial case
studies. In this research project, we chose the second alternative since we thought the

10022514L 2-36

phenomena we are studying would be even more visible and significant on software
systems of realistic size and complexity. Also, we thought that (2) should be a more
relevant and convincing validation for the software industry practitioners.

However, the problem in such studies is that it becomes difficult to study the
phenomena of interest in isolation, without having to deal with other sources of variation.
In our case, we thought that, if these metrics were to be interesting, they should explain a
significant percentage of the variation individually or in combination, despite other sources
of variation. However, we expect some degree of variation across projects.

Environment

The first system studied is an attitade ground support software for satellites (GOADA)
developed at the NASA Goddard Space Flight Center. The second one (GOESIM) is a
dynamic simulator for a geostationary environmental satellite. These systems are composed
of 525 and 676 Ada units, 90 Klocs and 170 Klocs, respectively, and have a fairly small
reuse rate (around 5% of source code lines). The third system we studied (TONS) is an
onboard navigation system for satellite that has been developed in the same environment
and is about 180 Ada units and 50 Klocs large, with an extremely small rate of reuse (2%
of source code lines). We selected projects with lower rates of reuse in order to make our
analysis of design factors more straightforward by removing what we think is a major
source of noise in this context.

Tool

A tool analyzing the interface parts of Ada source code has been developed in order to
capture the design characteristics of these systems. This tool is based on LEX&YACC
[LY92] and extracts generic high-level design information about the visibility and
interactions of the system declarations. This information is consequently used to compute
the metrics presented in Section 2.2, and others that might be defined.

Analytical Model

The response variable we use to validate the design metrics is binary, i.e., Did an error not
occur in an LMH? In order to analyze the impact of software metrics on the €rTor-proneness
of software parts, we used logistic regression, a classification technique [HL89] used in
many experimental sciences, based on maximum likelihood estimation, and presented
below. In this case, a careful outlier analysis must be performed in order to make sure that

10022514L 2-37

the observed trend is not the result of few observations [DG84]2. In particular, we first
used univariate logistic regression, to evaluate the impact of each of the metrics in isolation
on error-proneness. Then, we performed multivariate logistic regression, to evaluate the
relative impact of those metrics that had been assessed sufficiently significant in the
univariate analysis (e.g., & < 0.20 is a reasonable heuristic). This modeling process is
further described in [HL89].

A multivariate logistic regression model is based on the following relationship
equation (the univariate logistic regression model is a special case of this, where only one
variable appears):

1og(T-*?—p) = Co+ C1X1 + C2X2 + ... + CoXp

where p is the probability that no errors were found in a software part during the validation
phase, and the X;'s are the design metrics included as predictors in the model (called
covariates of the logistic regression equation). In the two extreme cases, i.e., when a
variable is either non-significant or entirely differentiates error-prone software parts, the
curve (between p and any single X;, i.e., assuming that all other Xj's are constant)

approximates a horizontal line and a vertical line respectively. In between, the curve takes a
flexible S shape. However, since p is unknown, the coefficients C; will be estimated
through a likelihood function optimization. This procedure assumes that all observations
are statistically independent. When building the regression equations, each observation was
weighted according to the number of errors detected in each software part. The rationale is
that each (non) detection of error is considered as an independent event. As a consequence,
software parts where no errors were detected were weighted 1.

Goodness-of-fit for such a model is assessed via a statistic called R2 (because
similar in concept to the least-square regression coefficient of determination), belonging to
the interval [0,1]. The higher R2, the more accurate the model. However, as opposed to the
R2 of least-square regression, high R2s are rare for logistic regression, for reasons whose
explanation is well beyond the scope of this text. The interested reader may refer to [FHL89]
for a detailed introduction to logistic regression.

Tables 1 and 2 contain the results we obtained through, respectively, univariate and
multivariate logistic regression on the three systems. We report those related to the metrics

2In addition, in order to confirm the obtained results, we used non-parametric tests for rank distributions
such as the Mann-Whitney U test [CAP88]. Results appeared to be consistent across techniques and, in
order to limit the amount of statistics provided to the reader and preserve the clarity of the text, we only
show the results obtained with logistic regression.

10022514L 2-38

that turned out to be the most significant ones across all three projects. For each metric, we
provide the following statistics:

10022514L

C (appearing in both tables), the estimated regression coefficient. The larger the
coefficient, the stronger the impact of the explanatory variable on the probability p.
Ay (appearing in Table 1 only), which is based on the notion of odd ratio [HL39],

and provides an evaluation of the impact of the metric on the dependent variable.
More specifically, the odd ratio y(X) represents the ratio between the probability of
not having an error and the probability of having an error when the value of the
metric is X. As an example, if, for a given value X, Wy(X) is 2, then it is twice more
likely that the software part does not contain errors than that it does contain errors.
The value of Ay is computed by means of the following formula

y(X+1)
Ay=——"—"
Vv

Therefore, Ay represents the reduction/increase in the odd ratio when the value X
increases by 1 unit. This provides a more intuitive insight than regression
coefficients into the impact of explanatory variables. (Since the whole range of RCI
is [0,1], we used one-tenth as the quantum for RCI increase with respect to which
Ay is computed.)

o (appearing in both tables), the level of significance, which provides an insight
into the accuracy of the coefficient estimates. The significance (@) of the logistic
regression coefficients tells the reader about the probability for the coefficient to be
different from zero by chance. Also, the larger the level of significance, the larger
the standard deviation of the estimated coefficients, the less believable the calculated
impact of the coefficient. The significance test is based on a likelihood ratio test
[HL89] commonly used in the framework of logistic regression.

2-39

3.2 Univariate Analysis

Results

As Table 1 shows, all strategies presented in Section 2.2 provide significant metrics, but
the strategy based on declaration counts. Therefore, these metrics, although based on
simple and appealing concepts, do not appear to be significant predictors.

All the metrics based on exported declarations, i.e., Local(sp), ESP(sp), EC(sp),
DEC(sp), and TE((sp), are not significant. Our explanation is that when an inconsistency
exists between an exporting module E and an importing module 7, 7 is more likely to be
corrected, since E may export to other modules. Changing E is likely to require changing
those other modules. Alternatively, a large amount of exports sometimes translates into a
need for genericity but, for many declarations, just results into additional fields and
dimensions. Therefore, the assumption underlying the export interactions metric appears
somewhat questionable.

All the metrics based on the IS_COMPONENT_OF relation appear significant in
the univariate analysis. However, they show a strong multicolinearity (i.e., the linear
correlations are strong between metrics). Since Avg_depth is the best predictor in its
category and in order to minimize the size of Table 1, only the Avg_depth results are
shown.

A close analysis of the correlation matrix of the studied metrics shows that these
results are not due to strong correlations between factors, e.g., when all factors are size
predictors. Therefore, all the metrics in Table 1 seem to capture not only significant but
different trends. This shows that most of the strategies are likely to be complementary and
useful. This is confirmed by the multivariate results presented in Section 3.3.

Project | GOADA GOESIM TONS
Stra Metrics C Ay a C Ay a C Ay o
USES | 1sP 0.8 45% 0.000]-0.717 49% 0.002]-0.96 38% 0.000

I.C_O | Avg Depth| -227 11% 0.000]|-24 9% 0.000|-3.9 2% 0.000{

Inter. | RCI 063 188% 0.000 | 0215 124% 0.047{/0.34 141% 0.001
Inter. | TIC -0.016 98.5% 0.001] -0.017 98.3% 0.002|-0.02 98% 0.15
Inter. | DIC -023 79% 0.000]-0.19 83% 0.001|-0.04 96% 0.19

Table 1. Univariate Analysis

10022514L 2-40

Detailed Discussion

TIC and DIC do not appear to be significant in TONS (& = 0.19 and 0.15, respectively),
whereas they are very significant in the two other systems. The analysis of the distribution
of these factors in all three systems, respectively, shows that their standard deviation (o)
and median (m) are much smaller in TONS, i.e., with respect to 7IC, o= 10, m = 2.5 for
TONS versus 0 = 32.74, m = 15.5 for GOADA, o = 32.18, m = 59 for GOESIM. As a
consequence, any trend related to either DIC or TIC is very likely not to be visible in the
TONS dataset. When considering that TONS is a significantly smaller system than the two
other ones, results may be interpreted as follows: the distribution of import interactions is
strongly dependent on the size of the system and input interaction metrics are likely to be
mediocre predictors for small systems.

Comparing Models

From a more general perspective, variations across models (i.e., univariate regression
equations) should be expected due to differences in project characteristics, i.e., size,
application domain. However, it is worth noticing that, despite the fact that these projects
belong to different application domains (within the context of satellite support systems) and
have been developed at different times, most of the models are surprisingly stable across
projects. Because of the functional shape of logistic models, coefficients that may appear
significantly different actually generate very similar models, e.g., In Table 1, coefficients
-2.27 and -3.9 yield Ay's of 11% and 2%, respectively. As a consequence, to evaluate the
stability of the models, the reader should rather look at the Ay column in Table 1. When
doing so, only RCI appears to have a noticeable model instability even though the trends

are consistent.

3.3 Multivariate Models

In this section, we present the results obtained by berforming a stepwise multivariate
logistic regression. Table 2 provides the estimated regression coefficients (C) and their
significance (&) based on a Wald test [HL89], which is obtained by comparing the
maximum likelihood estimate of a parameter to its estimated standard deviation. Regression
coefficients are not shown when their level of significance is above 0.2 (substituted by a

*)

10022514L 2-41

Projects GOADA GO_ESIM TONS
Strategy] Metrics C a C a C x

USES | ISP 09 004 |* - * -1.18 0.000
I.C_O | Avg Depth| -1.8 0.003 |-3.12 0.000} -5.62 0.000

Inter. | RCI 04 0.006 |03 0.07 | 02 0.16
Inter. | TIC -0.023 0.000 | -0.02 0.005] * *
Inter. | DIC 023 0.04 |-0.13 0.04 | -0.11 0.002

Table 2. Coefficients of Multivariate Models

Results

The very low levels of significance in Table 2 suggest that these metrics may be used in
combination as indicators of error-prone LMHs. Indeed, when used in a multivariate
model, many of these metrics are still significant and produce models that are more accurate
than univariate models (Table 2). The best univariate R2s are 0.115, 0.20 and 0.16 for
GOADA, GOESIM, and TONS, respectively. In the same order, the multivariate R2s are
0.21, 0.24, and 0.43. We can see that the results improved very significantly for GOADA
and TONS.

Interaction-based metrics are more complex but worth collecting, since they are the
only metrics defined at the declaration level that appeared significant. In addition, the
average LMH depth was consistently selected as a very good indicator. This is likely to be
an early measure of "size" of the LMH and is expectedly significant. Also, ISP, a metric
similar to the notion of fan-in shows to be significant across projects (except in the
multivariate GOESIM model for reasons explained below), while ESP, the equivalent
measure for exports (based on the fan-out of LMHE) is not significant. As a consequence, a
metric of the form (fan_in - fan_out)2, suggested in numerous occasions in the literature
[HK84, IS88, S90, Z91], does not appear to be significant. From a more general
perspective, metrics based on imports, regardless of the associated concepts, appear to
predict more accurately the error-proneness of software parts.

Comparing Models

Some variability in the estimated regression coefficients can be observed across
projects in Table 2 and requires some discussion. In multivariate models, coefficients have

10022514L 2-42

a tendency to adjust, statistically, for other variables [HL89]. Sometimes, variables are
weak predictors of the response variable when taken individually, and become more
significant when integrated in a multivariate model. In Table 1, DIC showed, for TONS, a
mediocre level of significance, whereas it appears to be a significant predictor in Table 2.
Moreover, its coefficient is very unstable across projects and the trend is reversed (positive)
for GOADA and TONS. When looking more carefully at the associations (not only the
narrower concept of linear correlation) between metrics, it can be determined that this is the
results of strong association between DIC and ISP in GOADA and TONS. These
associations are a typical source of coefficient instability [DG84], e.g., the coefficient of
ISP in GOADA varies from -0.9 to -0.39 when DIC is removed from the equation.

TIC remains non-significant because of its strong linear correlation (R2 = 0.76)
with DIC in the TONS dataset. Similarly, ISP does not appear significant in the GOESIM
dataset because of a strong correlation with DIC (R2 = 0.50). RCI in TONS shows a
weaker significance (@ = 0.16) than in the univariate results and no strong linear correlation
can be observed with the other metrics included in the multivariate equation. However,
LMHs with large numbers of imported interactions are all located in the low part of the
cohesion range. Such an association (likely to be spurious since it is not the case in the
other datasets) with DIC is likely to affect the significance of RCI in a multivariate
equation.

It is important to note that a different set of systems showing different distributions
might show very different trends. This points out a need for large scale investigation across
various development environments and application domains.

4 Conclusion

This study has shown that statistical models of extremely good significance can be built
based on high-level design information. In particular, we have determined accurate early
predictors for error-prone software. Moreover, the results suggested that, at this stage of
understanding, several strategies were worth investigating because none of them showed
dominant trends, while most of them appeared to be complementary. In order to provide
the practitioner with usable, well understood and validated models, software engineering
researchers will have to keep refining and validating the existing metrics. There is still
substantial room for improvement.

The stability of the impact of these metrics across projects allows us to draw
optimistic conclusions about the use of such quality indicators. Using early quality

10022514L 2-43

indicators based on objective empirical evidence appears possible. However, it is very
likely that this kind of indicators will behave differently across various domains of
application and development environments.

Therefore, the use of such indicators should always be preceded by a careful
empirical analysis of local error patterns and a thorough comparison across projects.

Our future work will be three-fold:

* Analyze more systems

* Validate further and refine the metrics we defined in this paper. The variations
across environments and the study/comparison of different architectures is likely to
give us interesting insights.

* Consistent with our current objectives, we will address the issues related to
building metric based empirical models earlier in the life cycle. In particular, the
next stage of this research will focus on defining and validating metrics for formal

specifications.

Acknowledgments

We thank Giuseppe Calavaro and Chris Lott for their helpful comments on the earlier drafts
of this paper.

REFERENCES

[AE92] W. Agresti and W. Evanco, "Projecting Software Defects from Analyzing
Ada Designs,” IEEE Trans. Software Eng., 18 (11), November, 1992.

[BBH93] L. Briand, V. Basili and C. Hetmanski, "Developing Interpretable Models
with Optimized Set Reduction for Identifying High Risk Software Components," IEEE
Trans. Software Eng., 19 (11), November, 1993.

[BO87] G. Booch, "Software Engineering with Ada,” Benjamin/Cumming
Publishing Company, Inc., Menlo Park, California, 1987.
[BR8E] V. Basili and H. Rombach, " The TAME Project: Towards Improvement-

Oriented Software Environments," JEEE Trans. Software Eng., 14 (6), June, 1988.

10022514L 2-44

[BTHO3] L. Briand, W. Thomas and C. Hetmanski, "Modeling and Managing Risk
early in Software Development,” International Conference on Software Engineering,
Maryland, May 1993

[CAPSS] J. Capon, “Statistics for the Social Sciences”, Wadworth publishing
company, 1988

[CY79] L. Constantine, E. Yourdon, "Structured Design,” Prentice Hall, 1979
[DG84] W. Dillon and M. Goldstein, Multivariate Analysis: Methods and
Applications, Wiley and Sons, 1984.

[DoD83] ANSI/MIL-STD-1815A-1983, Reference Manual of the Ada Programming
Languages, U.S. Department of Defense, 1983

[F91] Norman Fenton, "Software Metrics, A Rigorous Approach,” Chapman&Hall,
1991.

[G86] J. Gannon, E. Katz, V. Basili, "Metrics for Ada Packages: an Initial
Study,” Communications of the ACM, Vol. 29, N. 7, July 1986.

[GIM92] C. Ghezzi, M. Jazayeri, D. Mandrioli, "Fundamentals of Software
Engineering," Prentice Hall, Englewood Cliffs, NJ, 1992

[HK84] S. Henry, D. Kafura, "The Evaluation of Systems' Structure Using
Quantitative Metrics,” Software Practice and Experience, 14 (6), June, 1984.

[IS88] D. Ince, M. Shepperd, "System Design Metrics: a Review and Perspective,” Proc.
Software Engineering 88, pages 23-27, 1988

[K88] B. Kitchenham, "An Evaluation of Software Structure Metrics," Proc.
COMPSAC 88, 1988

[LY92] J. Levine, T. Mason, D. Brown, "lex & yacc,” OReilly & Associates,
Inc., 1992

[M77] J. Myers, "An Extension to the Cyclomatic Measure of Program Complexity,"
SIGPLAN Notices, 12(10):61-64, 1977

[MGBB90] A. Melton, D. Gustafson, J. Bieman, A. Baker, "A Mathematical
Perspective for Software Measures Research,” Software Engineering Journal, September
1990.

[R87] H. D. Rombach, "A Controlled Experiment on the Impact of Software
Structure and Maintainability:," IEEE Trans. Software Eng., 13 (5), May, 1987.

[R90] H. D. Rombach, "Design Measurement: Some Lessons Learned,” JEEE
Software, March 1990.

[S90] M. Shepperd, "Design Metrics: An Empirical Analysis,” Software
Engineering Journal, January 1990.

10022514L 2-45

[SB91] R. Selby and V. Basili, "Analyzing Error-Prone System Structure,” IEEE

Trans. Software Eng., 17 (2), February, 1991.
[Z91] W. Zage, D. Zage, P. McDaniel, 1. Khan, "Evaluating Design Metrics on -
Large-Scale Software,” SERC-TR-106-P, September 1991.

10022514L 2-46

SECTION 3—TECHNOLOGY EVALUATIONS

The technical papers included in this section were originally prepared as indicated below.

® Comparing Detection Methods for Software Requirements Inspections: A Repli-
cated Experiment, A. A. Porter, L. G. Votta Jr., and V. R. Basili, University of

Maryland, Technical Report TR-3327, July 1994

e “Software Process Evolution at the SEL,” V. Basili, S. Green, JEEE Software,
July 1994

10022514L 3-1

Comparing Detection Methods For Software Requirements
' Inspections: A Replicated Experiment

Adam A. Porter Lawrence .G. Votta; Jr. Victor R. Basili*

Abstract

Software requirements specifications (SRS) are usually validated by inspections, in which several reviewers
independently analyze all or part of the specification and search for defects. These defects are then collected at a
meeting of the reviewers and author(s).

Usually, reviewers use Ad Hoc or Checklist methods to uncover defects. These methods force all reviewers to
rely on nonsystematic technigues to search for a wide variety of defects. We hypothesize that a Scenario-based
method, in which each reviewer uses different, systematic techniques to search for different, specific classes of
defects, will have o significantly higher success rate.

We evaluated this hypothesis using a 3 x 2% partial factorial, randomized ezperimental design. Forty eight
groduaie students in computer science participated in the ezperiment. They were assembled into sizteen, three-
person teams. Each team inspected two SRS using some combination of Ad Hoc, Checklist or Scenario methods.

For each inspection we performed four measurements: (1) individual defect detection rate, (2) team defect
detection rate, (3) percentage of defects first identified at the collection meeting (meeting gain rate), and (4)
percentage of defects first identified by an individual, but never reported at the collection meeting {meeting loss
rale).

The erperimental results show that (1) the Scenario method has a higher defect detection rate than either Ad
Hoc or Checklist methods, (2) Scenario reviewers are more effective at detecting the defects their scenarios are
designed to uncover, and are no less effective at detecting other defects, (3) Checklist reviewers were no more
effective than Ad Hoc reviewers, and (4) Collection meetings produce no net improvement in the defect detection
rate - meeting gains are offset by meeting losses.

A preliminary version of this article entitled, An Experiment to Assess Different Defect Detection Methods For
Software Requirements Inspections®, has been selected to appear in the proceedings of the 16" International Conference
on Software Engineering. This article expands on our previous work in several ways:

1. We have replicated the initial experiment ~ doubling the number of data points.

2. We have. expanded the description of the Scenario detection methods and included appendices containing the full
text of the Ad Hoc, Checklist, and Scenario defect detection aids that were used during the experiment.

3. Our original analysis analyzed the effect of different detection methods on team performance. With the increased
number of data points, we are now able to extend the analysis to determine how these methods influence individual

performance. This allows us to reject several threats to the experiment’s internal vakidity.

4. We have added a new section analyzing the how inspection meetings affect inspection performance. Our results
show that meetings contribute nothing to defect detection effectiveness.

*This work is supported in part by the National Aeronautics and Space Administration under grant NSG-5123. Porter and Basili
are with the Department of Computer Science, University of Maryland, College Park, Maryland 20472. Votta is with the Software
Production Research Department, AT&T Bell Laboratories Naperville, IL 60566

10022514L 3-3

PRECEDING PACE LA hov LiED

1 Introduction

One of the most common ways of validating a software requirement;s specification (SRS) is to submit it to an
inspection by a team of reviewers. Many organizations use a three-step inspection procedure for eliminating
defects ! : detection, collection, and repair?. [8, 1T A team of reviewers reads the SRS, identifying as many
defects as possible. Newly identified defects are collected, usually at a team meeting, and then semt to the
document’s authors for repair.

We are focusing on the methods used to perform the first step in this process, defect detection. For this
article, we define a defect detection method to be a set of defect detection techniques coupled with an assignment
of responsibilities to individual rgviewers.

Defect detection techniques may range in prescﬁptivenes from intuitive, nonsystematic procedures, such as
Ad Hoc or Checklist techniques, to explicit and highly systematic procedures, such as formal proofs of correctness.

A reviewer’s individual responsibility may be general - to identify as many defects as possible — or specific -
to focus on a limited set of issues such as ensuring appropriate use of hardware interfaces, identifying untestable
requirements, or checking conformity to coding standards.

These individual responsibilities may be coordinated among the members of a review team. When they are
not coordinated, all reviewers have identical responsibilities. In contrast, the reviewers in coordinated teams may
have separate and distinct responsibilities.

In practice, revieyvers often use Ad Hoc or Checklist detection techniques to discharge identical, general
responsibilities. Some authors, notably Parnas and Weiss[13], have argued that inspections would be more
effective if each reviewer used a different set of systematic detection techniques to discharge different, specific
raponsibilitia.

Until now, however, there have been no reproducible, quantitative studies comparing alternative detection
methods for software inspections. We have conducted such an experiment and our results demonstrate that the
choice of defect detection method significantly affects inspection performance. Furthermore, our experimental

design may be easily replicated by interested researchers.

1We use the word defect instead of the word fault even though this does not adhere to the IEEE Standards on Software Engineering
Terminology [9]. We feel the word faunlt has a code-specific connotation ~ only one of the many places where inspections are used.

2Depending on the exact form of the inspection, they are sometimes called reviews or walkthroughs. For a more thorough
description of the taxonomy see [8] pp. 171ff and [10].

10022514L 3.4

Below we describe the relevant literature, several alternative defect detection methods which motivated our

study, our research hypothesis, and our experimental observations, analysis and conclusions.

1.1 Inspection Literature

A summary of the origins and the current practice of inspections may be found in Humphrey [8]. Consequently,
we will discuss only work directly related to our current efforts.

Fagan([6] defined the basic software inspection process. While most writers have endorsed his approach(3,
8], Parnas and Weiss are more critical [13]. In part, they argue that effectiveness suffers because individual
Teviewers are not assigned specific responsibilities and because they lack systematic techniques for meeting those
responsibilities.

Some might argue that Checklists are systematic because they help define each reviewer’s responsibilities and
suggest ways to identify defects. Certainly, Checklists often pose questions that help reviewers discover defects.
However, we argue that the generality of these questions and the lack of concrete strategies for answering them
makes the approach nonsystematic.

To address these concerns — at least for software designs — Parnas and Weiss introduced the idea of active
design reviews. The principal characteristic of an active design review is that each individual reviewer reads for a
specific purpose, using specialized questionnaires. This proposal forms the motivation for the detection method

proposed in Section 2.2.2.

1.2 Detection Methods

Ad Hoc and Checklist methods are the two most frequently used defect detection methods. With Ad Hoc
detection methods, all reviewers use nonsystgmatic techniques and are assigned the same general responsibilities.

Checklist methods are similar to Ad Hoc, but _each‘ reviewer receives a checklist. Checklist items capture
important lessons learned from previous inspections within an environment or application. Individual checklist
items may enumerate characteristic defects, prioritize différent defects, or pose questions tha.t_help reviewers
discover defects, such as “Are all interfaces clearly defined? or “If input is received at a faster rate than ca.n
be processed, how is this handled? The purpose of these items is to focus reviewer responsibilities and suggest

ways for reviewers to identify defects.

10022514L 3-5

O 4 o
«® o
L SYSTEMATIC
SELECTVE

/7 /'/’/"//(
AR
Figure 1: Systematic Inspection Research Hypothesis. This figure represents a software requirements
specification before and after a nonsystematic technique, general and identical responsibility inspection and 2
systematic technique, specific and distinct responsibility inspection. The points and holes represent various
defects. The line-filled regions indicate the coverage achieved by different members of the inspection team.
Our hypothesis is that systematic technique, specific and coordinated responsibility inspections achieve broader

coverage and minimize reviewer overlap, resulting in higher defect detection rates and greater cost benefits than
nonsystematic methods.

1.3 Hypothesis

We believe that an alternative approach which gives individual reviewers specific, orthogonal detection responsi-
bilities and specié.lized techniques for meeting them will result in more effective inspections.

To explore this alternative we developed a set of defect-specific techniques called Scenarios — collections of
procedures for detecting particular classes of defects. Each reviewer executes a single scenario and multiple
reviewers are coordinated to achieve broad coverage of the document.

Our underlying hypothesis is depicted in Figure 1: that nonsystematic techniques with general reviewer
responsibility and no reviewer coordination, lead to overlap and gaps, thereby lowering the overall inspectibn ef-
fectiveness; while systematic a.pproachs with specific, coordinated responsibilities reduce gaps, thereby increasing

the overall effectiveness of the inspection.

2 The Experiment

To evaluate our systematic inspection hypothesis we designed and conducted a multi-trial experiment. The goals
of this experiment were twofold: to characterize the behavior of existing approaches and to assess the potential
benefits of Scenario-based methods. We ran the experiment twice; once in the Spring of 1993, and once the

following Fall. Both runs used 24 subjects — students taking a graduate course in formal methods who acted

10022514L 3-6

as reviewers. Each complete run consisted of (1) a training phase in which the subjects were taught inspection
methods and the experimental procedures, and in which they inspected a sample SRS, and (2) an experimental

phase in which the subjects conducted two monitored inspections.

2.1 Experimental Design

The design of the experiment is somewhat unusual. To avoid misinterpreting the data it is important to under-
stand the experiment and the reasons for certain elements of its design 3.
2.1.1 Variables
The experiment manipulates five independent variables:
1. the detection method used by a reviewer (Ad Hoc, Checklist, or Scenario);
2. the experimental replication (we conducted two separate replications);
3. the inspection round (each reviewer participates in two inspections during the experiment);
4. the specification to be inspected (two are used during the experiment).

5. the order in which the specifications are inspected (either specification can be inspected first).

The detection method is our treatment variable. The other variables allow us to assess several potential
threats to the experiment’s internal validity.

For each inspection we measure four dependent variables:
1. the individual defect detection rate,
2. the team defect detection rate 4,
3. the percentage of defects first identified at the collection meeting (meeting gain rate), a.n&

4. the percentage of defects first identified by an individual, but never reported at the collection meeting

(meeting loss rate).

3See Judd, et al. [11], chapter 4 for an excellent discussion of randomized social experimental designs.

4The team and individual defect detection rates are the number of defects detected by a team or individual divided by the total
number of defects known to be in the specification. The closer that value is to 1, the more effective the detection method. No defects
were intentionally seeded into the specifications. All defects are naturally occurring.

10022514L 3.7

Round/Specification

Round 1 Round 2
WLMS CRUISE WLMS CRUISE
ad hoc 1B, 1D, 1G | 14, 1C, 1IE | 1A 1D, 2B
Detection 1H, 2A 1F, 2D
Method checklist | 2B 2E, 2G 1E, 2D, 2G | 1B, 1H
scenarios | 2C, 2F 2H 1F, 1C, 2E | 1G, 2A, 2C
2H oF

Table 1: This table shows the settings of the independent variables. Each team inspects two documents, the
WLMS and CRUISE, one per round, using one of the three detection methods. Teams from the first replication
are denoted 1A~1H, teams from the second replication are denoted 2A-2H.

2.1.2 Design

The purpose of this experiment is to compare the Ad Hoc, Checklist, and Scenario detection methods for in-
specting software requirements specifications.

When comparing multiple treatments, experimenters frequently use fractional factorial designs. These designs
systematically explore all combinations of the independent variables, allowing extraneous factors such as team
ability, specification quality, and learning to be measured and eliminated from the experimental analysis.

Had we used such a design each team would have participated in three inspection rounds, reviewing each of
three specifications and using each of three methods exactly once. The order in which the methods are applied
and the specifications are inspected would have been dictated by the experimental design.

Such designs are unacceptable for this study because they require some teams to use the Ad Hoc or Checklist
method after they have used the Scenario.method. Since the Ad Hoc and Checklist‘ methods are nonsystematic, it
is impossible to define, ﬁzonitor and enforce their use. Therefore, we were concerned that the use of the Scenario
method in an early round might imperceptibly distort the use of the other methods in later réunds.

Consequently, we chose a partial factorial design in which not all combinations of the independent variables
are present. With this design, each team participates in two inspections, using some combination of the three
detection methods, but teams using the Scenario method in the first round must continue to use it in the second -

round. Table 1 shows the settings of the independent variables.

2.1.3 Threats to Internal Validity

A potential problem in any experiment is that some factor may affect the dependent variable without the re-

searcher’s knowledge. This possibility must be minimized. We considered five such threats: (1) selection effects,

10022514L 3-8

(2) maturation effects, (3) replication effects, (4) instrumentation effects, and (5) presentation effects.
Selection effects are due to natural variation in human performance. For example, random assignment of
subjects may accidentally create an elite team. Therefore, the difference in this team’s natural ability will mask

differences in the detection method performance. Two approaches are often taken to limit this effect:

1. Create teams with equal skills. For example, rate each participant’s background knowledge and experience
as either low, medium, or high and then form teams of three by selecting one individual at random from

each experience category. Detection methods are then assigned to fit the needs of the experiment.

2. Compose teams randomly, but require each team to use all three methods. In this way, differences in team

skill are spread across all treatments.

Neither approach is entirely appropriate. Although, we used the first approach in our initial replication, the
approach is unacceptable for multiple replications, because even if teams within 2 given replication have equal
skills, teams from different replications will not.

As discussed in the previous section, the second approach is also unsuitable because using the Scenarios in
the first inspection Round will certainly bias the application of the Ad Hoc or Checklist methods in the second
inspection Round.

QOur strategy for the second replication and future replications is to randomly assign teams and detection
methods. However, teams that used Scenarios in the first round were constrained to use them again in the
second round. This compromise efficiently employs the subjects without biasing the performance of any teams.

Maturation effects are due to subjects learning as the experiment proceeds. We have manipulated the detection
method used and the order in which the documents are inspected so that the presence of this effect can be
discovered and taken into account.

Replication effects are caused by differences in the materials, participants, or execution of multiple repli-
cations. We limit this effect by using only first and second year graduate students as subjects - rather than
both undergraduate and graduate students. Also, we maintain consistency in our experimental procedures by
packaging the experimental procedures as a classtoom laboratory exercise. This helps us to ensure that similar
steps are followed for all replications.

As will be shown in Section 3, variation in the defect detection rate is not explained by selection, maturation,

10022514L 3.9

or replication effects.
Finally, instrumentation effects may result from differences in the specification documents. Such variation is

impossible to avoid, but we controlled for it by having each team inspect both documents.

2.1.4 Threats to External Validity

Threats to external validity limit our ability to generalize the results of our experiment to industrial practice.

We identified three such threats:

1. the reviewers in the first run of our experiment may not be representative of software programming profes-

sionals;
2. the specification documents may not be representative of real programming problems;

3. the inspection process in our experimental design may not be representative of software development prac-

tice.

The first two threats are real. To surmount them we are currently replicating our experiment using software
programming professionals to inspect industrial work products. Nevertheless, laboratory experimentation is a
necessary first step because it greatly reduces the risk of transferring immature technology.

We avoided the third threat by modeling the experiment’s inspection process after the design inspection
process described in Eick, et al. [5], which is used by several development organizations at AT&T; therefore, we

know that at least one professional software development organization practices inspections in this manner.

2.1.5 Analysis Strategy

Our analysis strategy had two steps. The first step was to find those independent variables that individually
explain 2 significant amount of the variation in the team detection rate. This was done by using an analysis of
variance technique as discusséd in Box, et al. ([4], pp. 165f).

The second step was to evaluate the combined effect of the variables shown to be significant in the initial
analysis. Again, we followed Box, et al. ciosely (4], pp. 2108).

Once these relationships were discovered and their magnitude estimated, we examined other data, such as

correlations between the categories of defects detected and the detection methods used that would confirm or

10022514L 3-10

reject (if possible) a causal relationship between detection methods and inspection performance.

2.2 Experiment Instrumentation

We developed several instruments for this experiment: three small software requirements specifications (SRS),

instructions and aids for each detection method, and a data collection form.

2.2.1 Software Requirements Specifications

The SRS we used describe three event-driven process control systems: an elevator contro} system, a water level
monitoring system, and an automobile cruise control system. Each specification has four sections: Overview, Spe-
cific Functional Requirements, External Interfaces, and a Glossary. The overview is written in natural language,
while the other three sections are specified using the SCR tabular requirements notation [7].

For this experiment, all three documents were adapted to adhere to the IEEE suggested format [10]. All
defects present in these SRS appear in the original documents or were generated during the adaptation process;
no defects were intentionally seeded into the document. The authors discovered 42 defects in the WLMS SRS;
and 26 in the CRUISE SRS. The authors did not inspect the ELEVATOR. SRS since it was only used for training

exercises.

Elevator Control System (ELEVATOR) [18] describes the functional and performance requirements of a

system for monitoring the operation of a bank of elevators (16 pages).

‘Water Level Monitoring System (WLMS) [16] describes the functional and performance requirements of

a system for monitoring the operation of a steam generating system (24 pages).

Automobile Cruise Control System (CRUISE) [12] describes the functional and performance require-

ments for an automobile cruise control system (31 pages).

2.2.2 Defect Detection Methods

To make a fair assessment of the three detection methods (Ad Hoc, Checklist, and Scenario) each method should
search for a well-defined population of defects. To accomplish this, we used a general defect taxonomy to define

the responsibilities of Ad Hoc reviewers.

10022514L 3-11

Omission Omission Data type inconsistencies
La Are sl dats shjects mentioned in the ...
MF Missing Funetionality 2.a Isthe ebject’s specification consistent ...
MP Missing Performance =
MI Misisg Interface Incorrect fanctionality
La Are il values written to each sutput ...
........... Lb Identify at Jenst one finction that uses ...
Commission Commission -
:II Amblguous Information Missing (or ambignous) fanctionality
K La Identify the roquired precition, response —
IF Incetrect or Extra Func. 2.a Isthe specification of these events .
WS ‘Wreag Section -
Ad Hoc Checklist Scenario

Figure 2: Relationship Between Defect Detection Methods. The figure depicts the relationship between
the defect detection methods used in this study. The vertical extent represents the coverage. The horizontal axis
labels the method and represents the degree of detail (the greater the horizontal extent the greater the detail).
Moving from Ad Hoc to Checklist to Scenario there is more detail and less coverage. The gaps in the Scenario
and Checklist columns indicate that the Checklist is a subset of the Ad Hoc and the Scenarios are a subset of
the Checklist.

The checklist used in this study is a refinement of the taxonomy. Consequently, Checklist responsibilities are
a subset of the Ad Hoc responsibilities.

The Scenarios are derived from the checklist by replacing individual Checklist items with procedures de-
signed to implement them. As a result, Scenario responsibilities are distinct subsets of Checklist and Ad Hoc
responsibilities. The relationship betwegn the three methods is depicted in Figure 2.

The taxonomy is a composite of two schemes developed by Schneider, et al. [14] and Basili and Weiss [2]. De-
fects are divided into two broad types: omission — in which important information is left unstated and commission
~ in which incorrect, redundant, or ambiguous information is put into the SRS by the author. Omission defects
were further subdivided into four categories: Missing Functionality, Missing Performance, Missing Environment,
and Missing Interface Commission defects were also divided into four categories: Ambiguous Information, In-
consistent Information, Incorrect or Extra Functionality, and Wrong Section. (See Appendix A for complete
taxonomy.) W.e provided a copy of the taxonomy to each reviewer.

Ad Hoc reviewers recei-ved no further assistance.

Checklist reviewers received a single checklist derived ﬁom the defect taxonomy. To generate the checklist we
populated the defect taxonomy with detailed questions culled from several industrial checklists. Thus, they are
very similar to checklists used in practice. All Checklist reviewers used the same checklist. (See Appendix B for

the complete checklist.)

10022514L 3-12

Defect Report Form

doation WLHS pae 12 Timem 4R PM
;-m fe Bev.ID ol Time Ouwt 314D

Figure 3: Reviewer Defect Report Form. This is a small sample of the defect report form completed during
each reviewer’s defect detection. Defects number 10 and 11, found by reviewer 12 of team C for the WLMS
specification are shown.

Finally, we developed three groups of Scenarios. Each group of Scenarios was designed for a specific subset

of the Checklist items:
1. Data Type Inconsistencies (DF),
2. Incorrect Functionalities (IF),
3. Missing or Ambiguous Functionalities (MF).

After the experiment was finished we applied the Scenarios to estimate how broadly they covered the WLMS
and CRUISE defects. We estimated that the Scenarios address about half of the defects that are covered by the

Checklist. Appendix C contains the complete list of Scenarios.

2.2.3 Defect Report Forms

We also developed a Defect Report Form. Whenever a potential defect was discovered — during either the
defect detection or the collection activities — an entry was made on the form. The entry included four kinds
of information: Inspection Activity (Det;.ctioh, Collection); Defect Location (Page and Line Numbers); Defect
Disposition, (Defects can be True Defects or False Positives); and a prose Defect Description.

A small sample of a Defect Report appears in Figure 3.

10022514L 3-13

2.3 Experiment Preparation

The participants were given a series of lectures on software requirements specifications, the SCR tabular re-
quirements notation, inspection procedures, the defect classiﬁcgtion scheme, and the filling out of data collection
forms. The references for these lectures were Fagan [6], Parhas.[l?:], and the IEEE Guide to Software Require-
ments Specifications [1].

The participants were then assembled into three-person teams — see Section 2.1.3 for details. Within each
team, members were randomly assigned to act as the moderator, the recorder, or the reader during the collection

meeting.

2.4 Conducting the Experiment
2.4.1 Training

For the training exercise, each team inspected the ELEVATOR SRS. Individual team members read the specifi-
cation and recorded all defects they found on a Defect Report Form. Their efforts were restricted to two hours.
Later we met with the participants and answered questions about the experimental procedures. Afterwards, each
team conducted a supervised collection meeting and filled out a master Defect Report Form for the entire team.

The ELEVATOR SRS was not used in the remainder of the experiment.

2.4.2 Experimental Phase

This phase involved two inspection rounds. The instruments used were the WLMS and CRUISE specifications
discussed in Section 2.2.1, a checklist, three groups of defect-based scenarios, and the Defect Report Form. The
development of the checklist and scenarios is described in Section 2.2.2. The same checklist and scenarios were
used for both documents.

During the first Round, four of the eight teams were asked to inspect the CRUISE specification; the remaining
four teams inspected the WLMS specification. The detection methods used by each team are shown in Table 1.
Defect detection was limited to two hours, and all potential defects were reported on the Defect Report Form.

After defect detection, all materials were collected.S

SFor each round, we set aside 14 two-hour time slots during which inspection tasks could be done. Participants performed each
task within a single two-hour session and were not allowed to work at other times. .

10022514L 3-14

Rev Method Sum| 1] 2 21 32 a1 | 42
42 | Data inconsistency 9 | 0] o0 0 0 0| o
43 | Incorrect functionality 6 0 1 -0 0 0 0
44 | Missing functionality 18] olo |* [1% o] **° 0] o

Team Scenario B | 0] 1 { o 1 - o] o

Key AH | DT MA AH DT | AH

Figure 4: Data Collection for each WLMS inspections. This figure shows the data collected from one
team’s WLMS inspection. The first three rows identify the review team members, the detection methods they
used, the number of defects they found, and shows their individual defect summaries. The fourth row contains
the team defect summary. The defect summaries show a 1 (0) where the team or individual found (did not find) a
defect. The fifth row contains the defect key which identifies those reviewers who were responsible for the defect
(AH for Ad Hoc only; CH for Checklist or Ad Hoc; DT for data type inconsistencies, Checklist, and Ad Hoc; IF
for incorrect functionality, Checklist and Ad Hoc; and MA for missing or ambiguous functionality, Checklist and
Ad Hoc). Meeting gain and loss rates can be calculated by comparing the individual and team defect summaries.
For instance, defect 21 is an example of meeting loss. It was found by reviewer 44 during the defect detection
activity, but the team did not report it at the collection meeting. Defect 32 is an example of meeting gain; it is
first discovered at the collection meeting.

Once all team members had finished defect detection, the team’s moderator arranged for the collection
meeting. At the collection meeting, the documents were reread and defects discussed. The team’s recorder
maintained the team’s master Defect Report Form. Collection was also limited to 2 hours. The entire Round

was completed in one week.

The second Round was similar to the first except that teams who had inspected the WLMS during Round 1

inspected the CRUISE in Round 2 and vice versa.

3 Data and Analysis

3.1 Data

Three sets of data are important to our study: the defect key, the team defect summaries, and the individual
defect summaries.

The defect key encodes which reviewers are responsible for each defect. In this study, reviewer responsibilities
are defined by the detection techniques a reviewer uses. Ad Hoc reviewers are rwponsibie (asked to search for) for
all defects. Checklist reviewers are responsible for a large subset of the Ad Hoc defects®. Since each Scenario is 2

refinement of several Checklist items, each Scenario reviewer is rsponsibfe for a distinct subset of the Checklist

6j.¢., defects for which an Ad Hoc reviewer is responsible.

10022514L 3-15

Rev Method Sem | 1| 2 14 17 25 | 26
42 AdHoc 7 | 0] 1 0 0 1] 0
43 Ad Hoc 6 | 0] 1 0 0 1] 0
44 Ad Hoc 4 | o]o |*] o|®°[o **° 0| o
Team Ad Hoc 10 | 0] 1] 0 1] o0
Key AH | MF AH AH AH | DT

Figure 5: Individual and Team Defect Summaries (CRUISE). This figure shows the data collected from
one team’s CRUISE inspection. The data is identical to that of the WLMS inspections except that the CRUISE
has fewer defects — 26 versus 42 for the WLMS — and the defect key is different.

defects.

The team defect summary shows whether or not a team discovered a particular defect. This data is gathered
from the defect report forms filled out at the collection meetings and is used to assess the effectiveness of each

defect detection method.

The individual defect summary shows whether or not a reviewer discovered a particular defect. This data is
gathered from the defect report forms each reviewer completed during their defect detection activity. Together
with the defect key it is used to assess whether or not each detection technique improves the reviewer’s ability

to identify specific classes of defects.

We measure the value of collection meetings by comparing the team and individual defect summaries to

determine the meeting gain and loss rates.

One team’s individual and team defect summaries, and the defect key are represented in Figures 4 and

Figure 5.

3.2 Analysis of Teamn Performance

Figure 6 summarizes the tearn performance data. As depicted, the Scenario detection method resulted in the
highest defect detection rates, followed by the Ad Hoc detection method, and finally by Checklist the detection
method.

Table 2 presents a statistical analysis of the team performance data as outlined in Section 2.1.5. The inde-
pendent variables are listed from the most to the least significant. The Detection method and Specification are

significant, but the Round, Replication, and Order are not.

Next, we analyzed the combined Instrumentation and Treatment effects. Table 3 shows the input to this

10022514L 3-16

0.8

RATE
0.4
1
e o {0 e s
| -
—
8 .
o
(1)

Ad J

ch CRUISE
o .
S -
g
(=3

T 1 T b 1 1
All Data Method Specication Round Repication Order
VARWABLE -

Figure 6: Defect Detection Rates by Independent Variable. The dashes in the far left column show each
teamn’s defect detection rate for the WLMS and CRUISE. The horizontal line is the average defect detection rate.
The plot demonstrates the ability of each variable to explain variation in the defect detection rates. For the
Specification variable, the vertical location of WLMS (CRUISE) is determined by averaging the defect detection
rates for all teams inspecting WLMS (CRUISE). The vertical bracket,], to the right of each variable shows one
standard error of the difference between two settings of the variable. The plot indicates that both the Method
and Specification are significant; but Round, Replication, and Order are not.

Independent SSr | vr | SSr | va | (S8Sr/vr)(vr/SSr) | Significance

Variable Level
Detection Method — treatment | .200 | 2 | .359 | 29 8.064 < .01
Specification- instrumentation | .163 [1 | .396 | 30 12.338 < .01
Inspection round — maturation | .007 | 1 | .551 | 30 391 .54
Experimental run - replication | .007 | 1 [.551 [30 301 54
Order__— presentation : .003 1 1 [.003] 30 141 71
[Team composition — selection | .289 | 15 [.268 | 16 | 1.151 B 39 |

Table 2: Analysis of Variance for Each Independent Variable. The analysis of variance shows that only
the choice of detection method and specification significantly explain variation in the defect detection rate. Team
composition is also not significant.

analysis. Six of the cells contain the average detection rate for teams using each detection method and specification
(3 detection methods applied to 2 specifications). The results of this analysis, shown in Table 4, indicate that the
interaction between Specification and Method is not significant. This means that although the average detection
rates varied for the two specifications, the effect of the detection methods is not linked to these differences.

Therefore, we reject the null hypothesis that the detection methods have no effect on inspection performance.

10022514L 3-17

Specification Detection Method
. Ad Hoc Checklist Scenario
WLMS .5 .38.29 .5 48 .45 .29 .52 .5.33 | .74 .57 .55 .4 .62 .55
(average) 43 41 57
Cruise 46 .27 .27 .23 .38 23 .35 | .19 .31 .23 .23 .5 .42 42 54 .35
(average) 31 .24 .45

Table 3: Team Defect Detection Rate Data. The nominal and average defect detection rates for all 16
teams.

Effect SSr | vr | SSr | vr | (SSr/vr)(vr/SSr) | Significance
. Level
| Detection Method | .200 | 2 | 212 | 26 12.235 < .01
Specification Jd43 | 1 | 212 | 26 17.556 < .01
MethxSpec 004] 2 | .212] 26 217 .806

Table 4: Analysis of Variance of Detection Method and Specification. This table displays the results of
an analysis of the variance of the average detection rates given in Table 3.

3.3 Effect of Scenarios on Individual Performance

We initially hypothesized that increasing the specialization and coordination of each reviewer’s responsibilities
would improve team performance. We proposed that the Scenario would be one way to achieve this. We have
shown above that the teams using Scenarios were the most effective. However,‘ this did not establish that the
improvement was due to increases in specialization and coordination, and not to some other factor.
Consequently, our concern is to determine exactly how the use of Scenarios affected the reviewer ’s performance.

To examine this, we formulated two hypothesis schemas.
¢ H1: Method X reviewers do not find any more X defects than do method Y reviewers.

e H2: Method X reviewers find either a greater or sinaller number of non X defects than do

method Y reviewers.

Alternative explanations for the observed improvement could be (1) the Scenario reviewers responded to some
perceived expectation that their performance should improve; or (2) the Scenario approach improves individual
performance regardless of Scenario content.

3.3.1 Rejecting the Perceived Expectation Argument

If Scenario reviewers performed better than Checklist and Ad Hoc reviewers on both scenario-targeted and non-

scenario-targeted defects, then we must consider the possibility that their improvement was caused by something

10022514L 3-18

Reviewers Using Method | Finding Defects of Type | Compared with Reviewers using Method
Detection Number Defect Number
Method Reviewers Population Present DT MF IF CH AH
DT 6 DT 14 - .02 .06 .01 .02
65) | (8) | (45 | (4 4)
MF 6 MF 5 07 - 12 .02 .04
(05 | @ 1 | @© (1)
IF 6 IF 5 .01 01 - .04 0
©) Q) |1as | @ (1)
CH 12 CH 38 .95 .86 -89 - .51
(10.5) | (11) { (12.5) | (8) (10)
AH 18 AH 4 91 .84 .75 37 -
(12) | (12.5) [(13) | (9.5) (11)

Table 5: Significance Table for H1 hypotheses: WLMS inspections. This table tests the H1 hypothesis
- Method X reviewers do not find any more X defects than do method Y reviewers - for all pairs of detection
methods. Each row in the table corresponds to a population of reviewers and the population of defects for which
they were responsible, i.e., method X reviewers and X defects. The last five columns correspond to a second
reviewer population, i.e., method Y reviewers. Each cell in the last five columns contains two values. The first
value is the probability that H1 is true, using the one-sided Wilcoxon-Mann-Whitney test. The second value -
in parentheses — is the median number of defects found by the method Y reviewers.

Reviewers Using Method | Finding Defects of Type | Compared with Reviewers using Method
Detection Number Defect Number
Method Reviewers Population Present DT | MF | IF CH AH
DT 5 DT 10 - 05| .03 <.01 .02
® @] QG (3)
MF 5 MF 1 NA - | NA| NA NA
ONEORBEONNQ) (0)
IF 5 IF 3 NA | NA | - NA NA
UREORRORN(Q) ()
CH 12 CH 24 >.99 | 95 | .93 - .98
® | (B3| (4] (25) ®)
AH 21 _AH 26 96 | 50 | 41| .02 -
OEEOREORNC) (5)

Table 6: Significance Table for H1 hypotheses: CRUISE inspections. This analysis is identical to that
performed for WLMS inspections. However, we chose not to perform any statistical analysis for the Missing
Functionality and Incorrect Functionality defects because there are too few defects of those types.

10022514L 3-19

Reviewers Using Method | Finding Defects of Type | Compared with Reviewers using Method
Detection Number Defect Number R
Method Reviewers Population Present DT | MF IF CH AH
DT 6 DT< 28 - .92 .82 .50 .64
: _ 45| 9 | @5 |65 (6)
MF 6 MF< 37 87 - .83 .56 .64
(11) | (9.5) | (12.5) | (8.5) (10)
IF 6 IFe 37 66 | .53 - 24 27
L (11) | (12) | (11.5) | (8.5) (10)
CH 12 CH¢ 4 12 .28 35 - .07
05 |1 M | @ | 8]
AH 18 AHC 0 NA | NA NA NA -
© | © | (0 | © (0)

Table 7: Significance Table for H2 hypothesis: WLMS inspections. This table tests the H2 hypothesis
- Method X reviewers find a greater or smaller number of non X defects than do method Y reviewers - for all
pairs of detection methods. Each row in the table corresponds to a population of reviewers and the population of
defects for which they were not responsible - i.e., method X reviewers and non X defects (the complement of the
set of X defects). The last five columns correspond to a second reviewer population, i.e., method Y reviewers.
Each cell in the last five columns contains two values. The first value is the probability that H2 is true, using the
two-sided Wilcoxon-Mann-Whitney test. The second value is the median number of defects found by the method
Y reviewers.

other than the scenarios themselves.

One possibility was that the Scenario reviewers were merely reacting to the novelty of using a clearly different
approach, or to a perceived expectation on our part that their performance should improve. To examine this
we analyzed the individual defect summaries to see how Scenario reviewers differed from other reviewers.

The detection rates of Scenario reviewers? are compared with those of all other reviewers in Tables 5, 6, 7
and 8. Using the one and two-sided Wilcoxon-Mann-Whitney tests [15], we found that in most cases Scenario
reviewers were more effective than Checklist or Ad Hoc reviewers at finding the defects the scenario was designed
to uncover. At the same time, all reviewers, regardless of which detection method each used, were equally effective
at finding those defects not targeted by any of the Scenarios.

. Since Scenario reviewers could not have known the defect classifications, it is unlikely that their reporting could
have been biased. Therefore these results suggest that the detection rate of Scenario reviewers shows improvement
only with regard to those defects for which they are explicitly responsible. Consequently, the argument that the
Scenario review.ers’ improved performance was primarily due to raised expectations or unknown motivational

factors is not supported by the data.

7i.e., reviewers using Scenarios.

10022514L 3-20

Reviewers Using Method | Finding Defects of Type | Compared with Reviewers using Method
Detection Number Defect Number
Method Reviewers Population Present DT {MF | IF | CH AH
DT 5 DT< 16 = 59 | .86 | .37 46
: @1 @@ (2)
MF 5 MF< 25 96 | - | .33 .06 .62
OREEOREORKS), (5)
IF 5 IF 23 96 | 41 | - | 44 57
(8) | (4) | (5) | (2.5) (5
CH 12 CH¢ 2 NA|[NA|NA]| - NA
OREOREORNO), @
AH 21 AH® 0 NA|NA|NA| NA -
©1© O] © (0

Table 8: Significance Table for H2 hypothesis: CRUISE inspections. This analysis is identical to that
performed for WLMS inspections. However, we chose not to perform statistical analysis for the non non Checklist
defects because there are too few defects of that type.

3.3.2 Rejecting the General Improvement Argument

Another possibility is that the Scenario approach rather than the content of the Scenarios was responsible for
the improvement.

Each Scenario targets a specific set of defects. If the reviewers using a type X Scenario had been no more
effective at finding type X defects than had reviewers using non-X Scenarios, then the content of the Scenarios
did not significantly influence reviewer performance. If the reviewers using a type X Scenario had been more
effective at finding non-X defects than had reviewers using other Scenarios, then some f;ctor beyond content
caused the improvement.

To explore these possibilities we compared the Scenario reviewers’ individual defect summaries with each
other.

Looking again at Tables 5, 6, 7, and 8 we see that each group of Scenario reviewers were the most effective
at finding the defects their scenarios were designed to detect, but were generally no more effective than other
Scenario reviewers at finding defects their Scenarios were not designed to detect.

Since Scenario reviewers showed improvement only in finding the defects for which they were explicitly re-
sponsible, we conclude that the cohtent of the Scenario was primarily ;&sponsible for the improved reviewer

performance.

10022514L 3-21

& 1 + AdHoc
* Cheddist
% X Scenario
2 o
&
'§ X
39__
s
: |
Em- !
; I++%%I* ‘+']+ '
o
. !
1] 5 10 16

Review Number

Figure 7: Meeting Gains for WLMS Inspections. Each point represents the meeting gain rate for a single
inspection, i.e., the number of defects first identified at a collection meeting divided by the total number of defects
in the specification. Each rate is marked with symbol indicating the inspection method used. The vertical line
segment through each symbol indicates one standard deviation in the estimate (assuming each defect was a
Bernoulli trial). This information helps in assessing the significance of any one rate. The average meeting gain
rate is 4.7 1.3% for the WLMS. (3.1 1.1% for the CRUISE.)

3.4 Analysis of Checklists on Individual Performance

The scenarios used in this study were derived from the checklist. Although this checklist targeted a large number
of existing defects, our analysis shows that the performance of Checklist teams were no more effective than Ad
Hoc teams. One explanation for this is that nonsystematic techniques are difficult for reviewers to implement.
'I'q study this explanation we again tested the H1 hypothesis that Checklist reviewers were no more effective
than Ad Hoc reviewers at finding Checklist defects.
From Tables 5 and 6 we see that even though the Checklist targets a large number of defects, it does not

actually improve a reviewer’s ability to find those defects.

3.5 Analysis of Collection Meetings
In his original paper on software inspections Fagan [6] asserts that
Sometimes flagrant errors are found during . .. [defect detection], but in general, the number of errors

found is not nearly as high as in the . .. [collection meeting] operation.

10022514L 3-22

From a study of over 50 inspections, Votta [17] collected data that strongly contradicts this assertion. In this
Section, we measure the benefits of collection meetings by comparing the team and individual defect summaries
to determine the meeting gain and meeting loss rates. (See Figur;e 4 and Figure 5).

A ”meeting gain” occurs when a defect is found for the first time at the collection meeting. A ”meeting loss”
occurs when a defect is first found during an individual’s defect detection activity, but it is subsequently not
recorded during the collection meeting. Meeting gains may thus be offset by meeting losses and the difference
between meeting gains and meeting losses is the net improvement due to collection meetings.

Our results indicate that collection meetings produce no net improvement.

3.5.1 Meeting Gains

The meeting gain rates reported by Votta were a negligible 3.9 +.7%. Our data tells a similar story. (Figure 7
displays the meeting gain rates for WLMS inspections.) The mean gain rate is 4.7 + 1.3% for WLMS inspections
and 3.1 £ 1.1% for CRUISE inspections. The rates are not significantly different.

It is interesting to note that these results are consistent with Votta’s earlier study even though Votta’s

reviewers were professional software developers and not students.

3.5.2 Meeting Losses

The average meeting loss rates were 6.8 + 1.6% and 7.7 & 1.7% for the WLMS and CRUISE respectively. (See
Figure 8.)
One cause of meeting loss might be that reviewers are talked out of the belief that something is a defect.
Another cause may be that during the meeting reviewers forget or can not reconstruct a defect found earlier.
This effect has not been previously reported in the literature. However, since the interval between the detection
and collection activities is usually longer in practice than it was in our experiment (one to two days in our study

versus one or two weeks in practice), this effect may be quite mgmﬁca.nt

3.5.3 Net Meeting Improvement

The average net meeting improvement is —.932.2 for WLMS inspections and —1.241.7 for CRUISE inspections.
(Figure 9 displays the net meeting improvement for WLMS inspections.) We found no correlations between the

loss, gain, or net improvement rates and any of our experiment’s independent variables.

10022514L 3-23

Percent of Defects Loss at Team Moeting

Figure 8: Meeting Loss Rate for WLMS Inspections. Each point represents the meeting loss rate for a
single inspection. The meeting loss rate is the number of defects first detected by an individual reviewer divided
by the total number of defects in the specification. Each rate is marked with a symbol indicating the inspection
method used. The vertical line segment through each symbol indicates one standard deviation in the estimate
of the rate (assuming each fault was a Bernoulli trial). This information helps in determining the significance of
any one rate. The average team loss rate is 6.8 + 1.6% for the WLMS. (7.7 + 1.7% for CRUISE).

4 Summary and Conclusions

Our experimental design for comparing defect detection methods is flexible and economical, and allows the
experimenter to assess several potential threats to the experiment’s internal validity. In particular, we determined
that neither maturation, replication, selection, or presentation effects had any significant influence on inspection
performance. However, differences in the SRS did.

From our analysis of the experimental data we drew several conclusions.

1. The defect detection rate when using Scenarios is superior to that obtained with Ad Hoc or

Checklist methods — an improvement of roughly 35%.

2. Scenarios help reviewers focus on specific defect classes. Furthermore, in comparison to Ad Hoc
or Checklist methods, their ability to detect other classes of defects is not compromised. (It should be
noted however, that the scenarios appeared to be better suited to the defect profile of the WLMS than the

CRUISE. This indicates that pootly designed scenarios may lead to poor inspection performance.)

3. The Checklist method - the industry standard, was no more effective than the Ad Hoc

10022514L 3.24

Detect Rate Galn or Loss
0 1
i A
RO S
o
}——
——ne
e
by
e
————

Team

Figure 9: Net Meeting Improvement for WLMS. Each symbol indicates the net meeting irprovement for
a single inspection. The average net meeting improvement rate is —.9 & 2.2 for the WLMS. (~1.2+ 1.7 for the
CRUISE). These rates are not significantly different from 0.

detection method.

4. On the average, collection meetings contribute nothing to defect detection effectiveness.

The results of this work have important implications for software practitioners. The indications are that
overall inspection performance can be improved when individual reviewers use systematic procedures to address
a small set of specific issues. This contrasts with the usual practice, in which reviewers have neither systematic
procedures nor clearly defined responsibilities.

Economical experimental designs are necessary to allow replication in other environments with different
populations. For software researchers, this work demonstrates the feasibility of constructing and executing

inexpensive experiments to validate fundamental research recommendations.

5 Future Work

The experimental data raise many interesting questions for future study.

o In many instances a single reviewer found a defect, but the defect was not subsequently recorded at the

collection meeting. Are single reviewers sometimes forgetting to mention defects they observed, or is

10022514L 3-25

the reviewer being talked out of the defect at the team rheeting? What are the significant suppression

mechanisms affecting collection meetings?

o Very few defects are initially discovered during collection meetings. Therefore, in view of their impact on

production interval, are these meetings worth holding?

o More than half of the defects are not addressed by the Scenarios used in this study. What other Scenarios

are necessary to achieve a broader defect coverage?

o There are several threats to this experiment’s external validity. These threats can only be addressed by
replicating and reproducing these studies. Each new run reduces the probability that our results can be
explained by human variation or experimental error. Consequently, we are creating a laboratory kit (i.e.,
a package containing all the experimental materials, data, and analysis) to facilitate replication. The kit

should be publicly available by June, 1994.

e Finally, we are using the lab kit to reproduce the experiments with other university researchers in Japan,
Germany, Italy, and Australia and with industrial developers at AT&T Bell Laboratories and Motorola
Inc. These studies will allow us to evaluate our hypotheses with different populations of programmers and

different software artifacts.

Acknowledgments

We would like to recognize the efforts of the experimental participants — an excellent job was done by all. Qur
thanks to Mark Ardis, John Kelly, and David Weiss, who helped us to identify sample requirements specifications
and inspection checklists, and to John Gannon, Richard Gerber, Clive Loader, Eric Slud and Scott VanderWeil

for their valuable technical comments. Finally, Art Caso’s editing is greatly appreciated.

10022514L 3-26

References

[1) IEEE Guide to Software Regquirements Specifications. Soft. Eng. Tech. Comm. of the [EEE Computer Society,
1984. IEEE Std 830-1984.

[2] V. R Basili and D. M. Weiss. Evaluation of a software requirements document by analysis of change data.
In Proceedings of the Fifth International Conference on Software Engineering, pages 314-323, San Diego,
CA, March 1981.

[3] Barry W. Boehm. Software Engineering Economics. Prentice Hall, Englewood Cliffs, NJ, 1981.

[4] G.E. P. Box, W. G. Hunter, and J. S. Hunter. Statistics for Ezperimenters. John Wiley & Sons, New York,
1978.

[5] Stephen G. Eick, Clive R. Loader, M. David Long, Scott A. Vander Wiel, and Lawrence G. Votta. Estimat-
ing software fault content before coding. In Proceedings of the 1{th International Conference on Software
Engineering, pages 5965, May 1992.

[6] M. E. Fagan. Design and code inspections to reduce errors in program development. IBM Systems Journal,
15(3):182-211, 1976.

[7] Kathryn L. Heninger. Specifying Software Requirements for Complex Systems: New Techniques and their
Application. IEEE Transactions on Software Engineering, SE-6(1):2-13, January 1980.

[8] Watts S. Humphery. Managing the Software Process. Addison-Wesley Publishing Co., 1989. Reading,
Massachusetts.

[9] IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable Software. Soft. Eng.
Tech. Comm. of the IEEE Computer Society, 1989. IEEE Std 982.2-1988.

[10) IEEE Standerd for software reviews and audits. Soft. Eng. Tech. Comm. of the IEEE Computer Society,
1989. TEEE Std 1028-1988.

[11] Charles M. Judd, Eliot R. Smith, and Louise H. Kidder. Researck Methods in Social Relations. Holt,
Rinehart and Winston, Inc., Fort Worth, TX, sixth edition, 1991.

[12] J. Kirby. Example NRL/SCR software requirements for an automobile cruise control and monitoring system.
Technical Report TR-87-07, Wang Institute of Graduate Studies, July 1984.

[13] Dave L. Parnas and David M. Weiss. Active design reviews: principles and practices. In Proceedings of the
8th International Conference on Software Engineering, pages 215-222, Aug. 1985,

[14] G. Michael Schnieder, Johnny Martin, and W. T. Tsai. An experimental study of fault detection in user
requirements. ACM Transactions on Software Engineering and Methodology, 1(2):188-204, April 1992.

[15] S. Siegel and N.J. Castellan, Jr. Nonparametric Statistics For the Behavioral Sciences. McGraw-Hill Book
Company, New York, NY, second edition, 1988.

[16] J. vanSchouwen. The A-7 requirements model: Re-examination for real-time systems and an application
to monitoring systems. Technical Report TR-90-276, Queen’s University, Kingston, Ontario, Canada, May
1990.

[17] Lawrence G. Votta. Does every inspection need a meeting? In Proceedings of ACM SIGSOFT °98 Symposium
on Foundations of Software Engineering. Association for Computing Machinery, December 1993.

[18] William G. Wood. Temporal logic case study. Technical Report CMU /SEI-89-TR-24, Software Engineering
Institute, Pittsburgh, PA, August 1989. '

10022514L 3-27

A Ad Hbc Detection

The defect taxonomy is due to the work of Schneider, et al., and Basili and Weiss.

e Omission

— Missing Functionality: Information describing the desired internal operational behavior of the system
has been omitted from the SRS.

— Missing Performance: Information describing the desired performance specifications has either been
omitted or described in a way that is unacceptable for acceptance testing.

— Missing Interface: Information describing how the proposed system will interface and communicate
with objects outside the the scope of the system has been omitted from the SRS.

— Missing Environment: Information describing the required hardware, software, database, or personnel
environment in which the system will run has been omitted from the SRS

e Commission

— Ambiguous Information: An important term, phrase or sentence essential to the understanding of
system behavior has either been left undefined or defined in a way that can cause confusion and
misunderstanding.

— Inconsistent Information: Two sentences contained in the SRS directly contradict each other or express
actions that cannot both be correct or cannot both be carried out.

— Incorrect Fact: Some sentence contained in the SRS asserts a facts that cannot be true under the
conditions specified in the SRS.

— Wrong Section: Essential information is misplaced within the SRS

10022514L 3-28

B Checklist Method

o General

— Are the goals of the system defined?

— Are the requirements clear and unambiguous?

— Is a functional overview of the system provided?

— Is an overview of the operational modes provided?

— Have the software and hardware environments been specified?

— If assumptions that affect implementation have been made, are they stated?

— Have the requirements been stated in terms of inputs, outputs, and processing for each function?
— Are all functions, devices, constraints traced to requirements and vice versa?

— Are the required attributes, assumptions and constraints of the system completely listed?

e Omission

— Missing Functionality
* Are the described functions sufficient to meet the system objectives?
* Are all inputs to a function sufficient to perform the required function?
* Are undesired events considered and their required responses specified?
* Are the initial and special states considered (e.g., system initiation, abnormal termination)?
— Missing Performance
+ Can the system be tested, demonstrated, analyzed, or inspected to show that it satisfies the
requirements?
+ Have the data type, rate, units, accuracy, resolution, limits, range and critical values
+ for all internal data items been specified?
x Have the accuracy, precision, range, type, rate, units, frequency, and volume of inputs and outputs
been specified for each function?
— Missing Interface
* Are the inputs and outputs for all interfaces sufficient?
+ Are the interface requirements between hardware, software, personnel, and procedures included?
— Missing Environment .
+ Have the functionality of hardware or software interacting with the system been properly specified?-
e Commission
— Ambiguous Information
+ Are the individual requirements stated so that they are discrete, unambiguous, and testable?
* Are all mode transitions specified deterministicly?
— Inconsistent Information
* Are the requirements mutually consistent?
* Are the functional requirements consistent with the overview?
* Are the functional requirements consistent with the actual operating environment?
— Incorrect or Extra Functionality
+ Are all the described functions necessary to meet the system objectives?
* Are all inputs to a function necessary to perform the required function?
* Are the inputs and outputs for all interfaces necessary? '
+ Are all the outputs produced by a function used by another function or transferred across an
external interface?
— Wrong Section
+ Are all the requirements, interfaces, constraints, etc. listed in the appropriate sections.

10022514L 3-29

C Scenarios

C.1 Data Type Consistency Scenario
1. Identify all data objects mentioned in the overview (e.g., hardware component, application variable, abbre-
viated term or function)
(a) Are all data objects mentioned in the overview listed in the external interface section?

2. For each data object appearing in the external interface section determine the following information:

e Object name:
¢ Class: {e.g., input port, output port, application variable, abbreviated term, function)
o Data type: (e.g., integer, time, boolean, enumeration)
o Acceptable values: Are there any constraints, ranges, limits for the values of this object
o Failure value: Does the object have a special failure value?
o Units or rates:
. In.itia.l.value:
(a) Is the object’s specification consistent with its description in the overview?
(b) I object represents a physical quantity, are its units properly specified?
(¢) X the object’s value is computed, can that computation generate a non-acceptable value?

3. For each functional requirement identify all data object references:

(a) Do all data object references obey formatting conventions?
(b) Are all data objects referenced in this requirement listed in the input or output sections?

(¢) Can any data object use be inconsistent with the data object’s type, acceptable values, failure value,
ete.?

(d) Can any data object definition be inconsistent with the data object’s type, acceptable values, failure
value, ete.?

C.2 Incorrect Functionality Scenario
1. For each functional requirement identify all input/output data objects:

(2) Are all values written to each output data object consistent with its intended function?
(b) Identify at least one function that uses each output data object.

2. For each functional requirement identify all specified system events:
(a) Is the specification of these events consistent with their intended interpretation?

3. Develop an invariant for each éystein mode (i.e. Under what conditions must the system exit or remain in
a given mode)? -
(a) Can the system’s initial conditions fail to satisfy the initial mode’s invariant?
(b) Identify a sequence of events that allows the system to enter a mode without satisfying the mode’s
invariant.
(c) Identify a sequence of events that allows the system to enter a mode, but never leave (deadlock).

10022514L 3-30

C.3 Ambiguities Or Missing Functionality Scenario
1. Identify the required precision, response time, etc. for each functional requirement.
(a) Are all required precisions indicated? A
2. For each requirement, identify all monitored events.

(2) Does a sequence of events exist for which multiple output values can be computed?
(b) Does a sequence of events exist for which no output value will be computed?

3. For each system mode, identify all monitored events.

(2) Does a sequence of events exist for which transitions into two or more system modes is allowed?

10022514L 3-31

@ The Software Engineering
Laboratory bas been adapting,

analyzing, and evolving
software processes for the last

18 years. Their approach is based
on the Quality Improvement
Paradigm, which is used to
evaluate process effects on both
product and people. The authors
explain this approach as it was
applied to reduce defects in code.

oftware

TFOCESS

volution

at the SEL

VicTOR BasiLI, University of Maryland
ScotT GREEN, NASA Goddard Space Flight Center

ince 1976, the Software |
Engineering Laboratory of the :
National Aeronautics and Space |
Administration’s Goddard Space !
Flight Center has been engaged in a !
program of understanding, assessing, |
and packaging sofrware experience.
Topics of study include process, prod- |
uct, resource, and defect models, as :
well as specific technologies and tools. !
The approach of the SEL — a consor- !
tium of the Software Engineering |
Branch of NASA Goddard’s Flight |

Dynamics Division, the Computer
Science Department of the University

of Maryland, and the Sofrware

Engineering Operation of Computer

Sciences Corp. — has been to gain an -

in-depth understanding of project and
environment characteristics using

process models and baselines. A
process is evaluated for study, applied
experimentally to a project, analyzed
with respect to baselines and process
model, and evaluated in terms of the
experiment’s goals. Then on the basis
of the experiment’s conclusions,
resules are packaged and the process is
tailored for improvement, applied
again, and reevaluated.

In this article, we describe our
improvement approach, the Quality
Improvement Paradigm, as the SEL
applied it to reduce code defects by
emphasizing reading techniques. The
box on p. 63 describes the Quality
Improvement Paradigm in detail. In
examining and adapting reading tech-
niques, we go through a systemaric
process of evaluating the candidate

10022514L

0740-7459/94,/804 00 © 1984 €5E

3-33

JULY 1894

PRECEDING PACE BLANK ROV FRIZU

process and refining its implementa-
don through lessons learned from pre-
vious experiments and studies.

As a result of this continuous, evo-
ludonary process, we determined that
we could successfully apply key ele-
ments of the Cleanroom develop-
ment method in the SEL environ-
ment, especially for projects involving
fewer than 50,000 lines of code (all
references to lines of code refer to
developed, not delivered, lines of
code). We saw indications of lower
error rates, higher producrtivity, 2
more complete and consistent set of

code comments, and 2 rediswibudon !

of developer effort. Although we have
not seen similar reliability and cost
gains for larger efforts, we contdnue to
: .)
investigate the Cleanroom method’s
effect on them.

EVALUATING CANDIDATE PROCESSES

To enhance the possibility of
improvement in a particular environ-
ment, the SEL introduces and evalu-
ates new technology within that envi-
ronment. This involves experimenta-
tion with the new technology, record-
ing findings in the context of lessons
learned, and adjusting the associated
processes on the basis of this experi-
ence. When the technology is notably
risky — substandally different from
what is familiar to the environment —
or requires more detailed evaluation
than would normally be expended, the
SEL conducts experimentation off-
line from the project environment.

Off-line experiments may tke the
form of either controlled experiments
or case studies. Controlled experi-
ments are warranted when the SEL
needs a detailed analysis with statistcal
assurance in the resules. One problem
with controlled experiments is that the
project must be small enough to repli-
cate the experiment several imes. The
SEL then performs a case study to val-
idate the results on a project of credi-
ble size that is representative of the

environment. The case study adds

!

validity and credibility through the use
of typical development systems and

controlled experiments and case std-
ies, the Goal/Question/Metric para-
digm, described in the box on p. 63,
provides an important framework for
focusing the analysis.

On the basis of experimental

results, the SEL packages a set of

lessons learned and makes them avail-
able in an experience base for furure
analysis and application of the tech-
nology.

Experiment 1: Reading versus festing.
Although the SEL had historically
been a test-driven organizaton, we
decided to experiment with introduc-
ing reading techniques. We were par-
ticularly interested in how reading
would compare with testing for faule
detection. The goals of the first off-
line, controlled experiment! were to
analyze and compare code reading,
funcdonal tesdng. and structural test-
ing, and to evaluate them with respect
to fault-detection effectiveness, cost,
and classes of faults detected.

We needed an analysis from the
viewpoint of quality assurance as well
as a comparison of performance with
respect to software tvpe and program-
mer experience. Using the GQM par-

adigm, we generated specific questions’

on the basis of these goals.
We had subjects use reading by

. stepwise abstraction,? equivalence-par-

!
'
r
|
i

ddoning boundary-value testng, and
statement-coverage souctural tesdng.
We conducted the experiment

twice at the University of Maryland on

graduate students (42 subjects) and

once at NASA Goddard (32 subjects). i
The experiment structure was a frac- |

donal factorial design, in which every
subject applied each technique on a

different program. The programs

included a text formarter, a plotrer, an
abstract daw type, and a database, and
they ranged from 145 to 365 lines of
code. We seeded each program with
faults. The reading performed was at
the unit level.

{EEE SOFTWARE

10022514L

3-34

Although the results from both

| experiments support the emphasis on
professional staff. In analyzing both !
! results of the controlled experiment on
| the NASA Goddard subjects because it

reading techniques, we report only the

involved professional developers in the
target environment.

Figure 1 shows the fault-detection
effectiveness and rate for each
approach for the NASA Goddard
experiment. Reading by stepwise
abstraction proved superior to testing

. Figure 1. Results of the reading-ver-

sus-testing controlled experiment, in
whick reading was compared with
functional and structural testing. (A)
Mean number of fanlits detected for
eack technique and (B) number of
Saulrs detected per bour of use for each
rechiiguee.

|

techniques in both the effectiveness
and cost of fault detection, while obvi-
ously using fewer computer resources.

Even more interesung was that the
subjects did a berter job of estimatng
the code quality using reading than
they did using testing. Readers
thought they had found only about
half the faults (which was nominally
correct), while functional testers felt
that had found essentally all the faults
(which was never correct).

Furthermore, after completing the
experiment, more than 90 percent of
the participants thought functional
testing had been the most effective
technique, although the results clearly
showed otherwise. This gave us some
insight into the psychological effects of
reading versus testing. Perhaps one
reason testing appeared more satsfy-
ing was that the successful executon of
multiple test cases generated a greater
comfort level with the product quality,
actrually providing the tester with a
false sense of confidence.

Reading was also more effectve in
uncovering most classes of faults,

including interface faults. This told us

that perhaps reading might scale up
well on larger projects.

Experiment 2: Validation with Cleanroom.
On the basis of these results, we
decided to emphasize reading tech-
niques in the SEL environment.
However, we saw lirtle improvement
in overall reliability of the develop-
ment systems. Part of the reason may
have been that SEL project personnel
had developed such faith in testing
that the quality of their reading was
relaxed, with the assumpton that test-
ing would ultimately uncover the
same faults. We conducted a small
off-line experiment at the University
of Maryland to test this hypothesis;
the results supporred our assumption.
(We did this on a small scale just to
verify our hypothesis before condnu-
ing with the Cleanroom experiment.)

Why the Cegnroom method? The Clean-
room method emphasizes human dis-
cipline in the development process,
using a mathematically based design
approach and a statistical testing
approach based on anticipated opera-

gating the Cleanroom method.

Figure 2. Smple measures, baselines, and expectations for the case studies investi-

tional use.3 Development and testing
teams are independent, and all devel-
opment-team actvities are performed
without on-line testing.

Techniques associated with the
method are the use of box structures
and state machines, reading by step-
wise abstraction, formal correctmess
demonstrations, and peer review.
System development is performed
through a pipeline of small increments
to enhance concentradon and permit
testing and development to occur in
parallel.

Because the Cleanroom method
removes developer tesdng and relies
on human discipline, we felt it would
overcome the psychological barrier of
reliance on testing.

Applying the QIP. The first step of the
Quuality Improvement Paradigm is to
characterize the project and its envi-
ronment. The removal of developer
unit testing made the Cleanroom
method 2 high-risk technology. Again,
we used off-line experimentation at
the University of Maryland as 2 mit-
gating approach.® The environment
was a laboratory course at the univer-
sity, and the project involved an elec-
tronic message system of about 1,500
LOC. The experiment structure was a
simple replicated design, in which
control and experiment teams are
defined. We assigned 10 three-person
experiment teams to use the
Cleanroom method. We gave five
three-person control teams the same
development methodology, but
allowed them to test their systems.
Each team was allowed five indepen-
dent test submissions of their pro-
grams. We collected data on program-
mer background and artrude, com-
puter-resource activity, and actual
testing results.

The second step in the Quality
Improvement Paradigm is to set goals.
The goal here was to analyze the
effects of the Cleanroom approach and
evaluate it with respect to process,
product, and participants, as compared
with the non-Cleanroom approach.

10022514L

3-35

ORKz:1,

JULY 1884

¢ lv.»e~ E“

OF POOR QUN.ITV

We generated questions correspond-
ing to this goal, focusing on the
method’s effect on each aspect being
studied.

The next step of the Quality Im-
provement Paradigm involves select-
ing an appropriate process model. The
process model selected for this experi-
ment was the Cleanroom approach as
defined by Harlan Mills at IBM’s
Federal Systems Division, but modi-
fied for our environment. For exam-
ple, the graduate-student assistant for
the course served as each group’s inde-
pendent test team. Also, because we
used a language unfamiliar to the sub-
jects to prevent bias, there was a risk of
errors due solely to ignorance about
the language. We therefore allowed
teams to cleanly compile their code
before submitting it to the tester.

Because of the nature of controlled
experimentation, we made few modifi-
catons during the experiment.

Cleanroom’s effect on the software-
development process resulted in the
Cleanroom developers more effective-
Iy applying the off-line reading tech-
niques; the non-Cleanroom teams
focused their efforts more on func-
tional testing than reading. The
Cleanroom teams spent less time on-
line and were more successful in mak-
ing scheduled deliveries. Further
analysis revealed that the Cleanroom
products had less dense complexity, a
higher percentage of assignment state-
ments, more global data, and more
code comments. These products also
more completely met the system
requirements and had a higher per-
cenuage of successful independent test
cases.

The Cleanroom developers indicat-
ed that they modified their normal
software-development activities by
doing 2 more effectve job of reading,
though they missed the satisfaction of
actual program execudon. Almost all
said they would be willing to use
Cleanroom on another development
assignment.

Through observation, it was also
clear that the Cleanroom developers

did not apply the formal methods
associated with Cleanroom very rigor-
ously. Furthermore, we did not have
enough failure data or experience with
Cleanroom testing to apply a reliabili-
ty model. However, general analysis
did indicate that the

| The subsystems we chose are an
! integral part of attitude determina-
| tion and are highly algorithmic.
Both are interactive programs that
together contain approximately
40,000 LOC, representing about 12
percent of the entire

Cleanroom approach had atdrude ground-support
potental payoff, and that AlMOST system. The rest of the
addidonal investigation ground-support system
was warranted. ALL THE was developed using
You can also view this the standard SEL devel-
experiment from the fol- CI-EANROOM opment methodology.
lowing perspective: We TEAM SAID The project was
applied two development ’ staffed principally by five
approaches. The only THEY D USE people from the Flight
real difference between THE MHHOD Dynamics Division,

them was that the con-
ol teams had one extra
piece of technology
(developer testing), yet
they did not perform as well as the
experiment teams. One explanadion
might be that the control group did
not.use the available nontesting tech-
niques as effectively because they knew
they could rely on testing to detect
faults. This supports our earlier find-
ings associated with the reading-ver-
sus-testing experiment.

EVOLVING SELECTED PROCESS

The positive results gathered from
these two experiments gave us the jus-
tification we needed to explore the
Cleanroom method in case studies,
using typical development systems as
dana points. We conducted two case
studies to examine the method, again
following the steps of the Quality
Improvement Paradigm. A third case
study was also recently begun.

First case study. The project we
selected, Project 1, involved two sub-
systems from a typical attitude
ground-support system. The system

performs ground processing to deter- |

mine a spacecraft’s attitude, receiving
and processing spacecraft telemetry
data to meét the requirements of a
particular mission.

AGAIN.

which houses the SEL.
All five were also work-
ing on other projects, so
only part of their time
was allocated to the two subsystems.
Their other responsibilities often took
time and attenton away from the case
study, but this partial allocation repre-
sents typical staffing in this environ-
ment. All other projects with which
the Project 1 staff were involved were
non-Cleanroom efforts, so staff mem-
bers would often be required to use
multiple develop-ment methodolo-
gies during the same workday.

The primary goal of the first case
study was to increase software quality
and reliability withourt increasing cost.
We also wanted to compare the char-
acteristics of the Cleanroom method
with those typical of the FDD envi-
ronment. A well-calibrated baseline
was available for comparison that
described a variety of process charac-
teristics, including effort distribution,
change rates, error rates, and produc-
tvity. The baseline represents the his-
tory of many earlier SEL srudies.
Figure 2 shows a sample of the expect-
ed variadons from the SEL baselines
for a set of process characteristics.

Choosing ond tailoring processes. The
| process models available for examina-
ton were the standard SEL model,’
which represents 2 reuse-oriented
waterfall life-cycle model; the

IEEE SOFTWARE

10022514L

3-36

IBM/FSD Cleanroom model, which | prowded additonal training and mot- | team broke the total effort into six

appeared in the literature and was
available through training; and the
experimental Um'versity of Maryland
Cleanroom model, which was used in
the earlier controlled experiment.#

We examined the lessons learned

from applying the IBM and University
of Maryland models. The results from
the IBM mode] were notably posiive,
showing thar the basic process, meth-
ods, and techniques were effecdve for
that particular environment. However,
the process model had been applied by
the actual developers of the methodol-
ogy, in the environment for which it
was developed. The University of
Maryland model also had specific
lessons, including the effects of not
allowing developers to test their code,
the effectiveness of the process on a
small project, and the conclusion that
formal methods appeared particular-
ly difficult to apply and required specif-
ic .
On the basis of these lessons and the
characteristics of our
environment, we select-
ed a Cleanroom pro-
cess model with four
Ley elements:

+ separaton of devel-
opment and test teams,

¢ reliance on peer
review instead of unit-
level testing as the pri-
mary developer verifica-
ton technique,

+ use of informal
state machines and
functions to define the
systern design, and

¢ a statistical approach to testng
based on operational scenarios.

We also provided training for the
subjects, consistent with a University of
Maryland course on the Cleanroom
process model, methods, and tech-
niques, with emphasis on reading
through stepwise abstraction. We also
stressed code reading by multiple
reviewers because stepwise abstracton
was new to many subjects. Michael
Dyer and Terry Baker of IBM/FSD

PROJECT
RESULTS
LEDUSTO
EMPHASIZE
PEER REVIEWS
AND USE OF
INDEPENDENT
TESTING.

! vation by describing IBM’s use of

Cleanroom.

To mitigate risk and address the
developers’ concerns, we examined
backout options for the experiment.
For example, because the subsystems
were highly mathematical, we were
afraid it would be difficult to find and
correct mathematical errors without
any developer testing. Because the pro-
ject was part of an operational system
with mission deadlines, we discussed
options that ranged from allowing
developer unit testing to discondnuing
Cleanroom altogether. These discus-
sions helped allay the primary appre-
hension of NASA Goddard manage-
ment in using the new methodology.
When we could not get informaton
about process applicadon, we followed
standard SEL process-model activies.

We also noted other management
and project-team concerns.
Requirements and specifications change
frequently during the development
cycle in the FDD envi-
ronment. This instabili-
ty was of particular con-
cern because the Clean-
room method is built on
the precept of de-
veloping software right
the first tme. Another
concern was that, given
the difficuldes encoun-
tered in the University

of Maryvland experiment

methods, how success-
fully could a classical
Cleanroom approach be
applied? Finally, there was concern
about the psychological effects of sepa-
rating development and testing, specif-
ically the inability of the developers to
execute their code. We targeted all
these concerns for our postproject
analysis.

Project 1 lasted from January 1988
through September 1990. We separat-
ed the five team members into a three-
person development team and a two-
person test team. The development

about applying formal |

incremental builds of approximately
6,500 LOC each. An experimenter
team consisting of NASA Goddard
managers, SEL representatives, a tech-
nology advocate familiar with the IBM
model, and the project leader moni-
tored the overall process.

We modified the process in real
time, as needed. For example, when we
merged Cleanroom products into the
standard FDD formal review and doc-
umentation actvities, we had to modify
both. We altered the design process to
combine the use of state machines and
radivonal souctured design. We also
collected dara for the monitoring team
at various points throughout the pro-
ject, although we tried to do this with
as litde disturbance as possible to the
project team.

Anolyzing and packaging results. The final
steps in the QIP involve analyzing and
packaging the process results. We
found significant differences in effort
distribution during development
between the Cleanroom project and
the baseline. Approximately six percent
of the toral project effort shifred from
coding to design activities in the
Cleanroom effort. Also, the baseline
development teams traditonally spent
approximately 85 percent of their cod-
ing effort writing code, 15 percent
reading it The Cleanroom team spent
about 50 percent in each actvity.

The primary goal of the first case
study had been to improve reliability
without increasing cost. Analysis
showed a reducton in change rate of
nearly 50 percent and a reduction in
error rate of greater than a third.
Although the expectaton was for pro-
ductdvity equivalent to the baseline, the
Cleanroom effort also improved in that
area by approximately 50 percent. We
also saw a decrease in rework, as
defined by the amount of dme spent
correcting errors. Additional analysis of
code reading revealed that three
fourths of all errors uncovered were
found by only one reader. This
prompted a renewed emphasis on mul-

10022514L

3-37

JULY 1884

QUALITY IMPROVEMENT PARADIGM: FOUNDATION FOR IMPROVEMENT -
The Quality Improve- The QIP uses two tools: to derect defects), the pur- learning and packaging of
| ment Paradigm is an effec- the Goal/Question/Metric pose of the study (like assess- reusable experiences. It
tve framework for conduct- paradigm and the ment or prediction), the packages experiences by
ing experiments and studies Expetience Factory point of view from which building informal, schema-
like those described in the Organization. the study is performed (like tzed, formal, and automated
main text. It is an experi- customer’s or manager’s), models and measures of
; mental but evoludonary GQM poradigm. The GQM and the context in which the software processes, products,
i concept for learning and _paradigm is a mechanism_ study is performed (like peo- and other forms of knowl-
| improvement.! _used in the planning phase ple-oriented or problem-ori- edge, and diswributes them

The QIP has six steps: of the Quality Improvement ented factors). through consultation, docu-

1. Characterize the pro- _ Paradigm for defining ard For example, two goals mennadon, and automated
jectand its environment.- . * evaluating a set of opera- associated with the applica- support.

2. Set quantifiable goals. tional goals using measure- tion of the Cleanroom While project organiza-
for siccessful project perfor- ment.2 It provides 2 system- method in the SEL were tion follows an evolutionary
mance and improvement. atic approach for tailoring analysis of the Cleanroom process model that reuses

3. Choose the appropri- and integrating goals with process to characterize packaged experiences, the .

| ate process models, support- models of the software resource allocation from the - Experience Factory provides
| ing methods, a.ndnools for processes, products, and - project manager’s point of dlesetofpmc&sneedcd
| theproject. ~ ~ quality perspectives of inter- view, and analysis of the for learting, pad:zgmg and
4. Execute the processes, est, according to the specific Cleanroom product to char- storing the project organiza-
] construct the products, col- needsofthepro;ectand acterize defects from the tion’s experience for reuse.
. lectand validate the pre- organizition. customer’s point of view. ‘The Expencnce Facrory
scnbeddatz,andanalyzetbe You define goals in an U Orgmmonreprsmtsthc
. data to provide real-time operational, tractable way by Experience Factory Orges- - integration of these two
. feedback for corrective refining them into a set of zofioa. The Experience - functions.
action. I questions that extract appro- Factory Organization is an REFERENCF.S -

5. Anz‘}yu:hcdmno priate information from the organim:iomlsmxcmthzt 1.V, Baii, “O Evalostion of
evaluate current practices, . models. The questions, in supports the activities speci- wmw
determine problems, record . tamn, define the mewics . ﬁed in the QIP by contnm- dog"‘reda.an:m-lm cs
findings; and make recom-’ neededmdeﬁneandmm-_ I
mendations for futare - pret the goals. -

| process improvemexits. ... A goal-generation tem-
"'« 6. Package the experience _pla:ehelpsmdevelopmg .
in the form of updated and re- . «-goals. The template specifies j
| fined models, and save the e essential elements: the
knowledge gained from this - ob)ectofmt:rst(lihprod—
and earlier projects in an expe- . -uct 6r process), the aspect of
rience base for futiite projects. - 'mﬂikecostorabﬂny

tple readers throughout the SEL envi-
ronment.

We also examined the earlier con-
cerns expressed by managers and the
project team. The results showed
increased effort in early requirements-
analysis and design activities and a
clearer set of in-line comments. This
led to a better understanding of the
whole systern and enabled the project
team to understand and accommodate
changes with greater ease than was
typical for that environment.

We reviewed the application of
classical Cleanroom and noted success-
es and difficulties. The structure of
independent teams and the emphasis
on peer review during development
was easy to apply. However, the devel- !

opment team did have difficulty using
the associated formal methods. Also,
unlike the scheme in the classical
Cleanroom method, the test team fol-
lowed an approach that combined sta-
tistical testing with traditional func-
tional testing.

Finally, the psychological effects of
independent testing appeared to be
negligible. All ream members indicared
high job satisfaction as well as a will-
ingness to apply the method in future
projects.

We packaged these early resulss in
various reports and presentations,
including some at the SEL’s 1990
Software Ene:meennc Workshop. As a

reference for furure SEL Cleanroom ;
projects, we also began efforts to pro-

duce a document describing the SEL
Cleanroom process model, including
derails on specific activities. Cl'he
completed document is now available
to current Cleanroom projects.)

Second case study. The first case study
showed us that we needed berer train-
ing in the use of formal methods and
more guidance in applying the testing
approach. We also realized that experi-

i ences from the inital project team had

to be disseminated and used.

Again, we followed the Quality
Improvement Paradigm. We selected
two projects: one similar to the inigal
Cleanroom project, Project 24, and
one more representatve of the typical
FDD contractor-support environment,

tEEE SOFTWARE

10022514L

3-38

63

(B)

Figure 3. Measurement comparisons for too case studies investigating Cleanroom.
The first case study involved one project, Project 1. The second case study mvolved
fwo projects, Projects 24 and 2B. (A) Percentage of total development effort for
various development activities, and (B) productivity in lines of code per day, change
rate in changes per thousand lines of code, and reliability in errors per thousand
lines of code.

Project 2B.
Project 2A involved a different sub-

: system of another atwirude ground-sup-

port system. This subsystem focused
on the processing of telemetry data,
comprising 22,000 LOC. The project
was staffed with four developers and
two testers. Project 2B invoived an
entire mission atutude ground-support
system, consisting of approximately
160,000 LOC. At its peak, it was
staffed with 14 developers and four
testers.

Setting goals and choosing processes. The
second case studv had two goals. One
was to verify measures from the first
study by applving the Cleanroom
method to Project 2A, a project of
similar size and scope. The second was
to verify the applicability of
Cleanroom on Project 2B, a substan-
dally larger project but one more rep-
resentatve ‘of the typical environment.
We also wanted to further wailor the

| process model to the environment by

using results from the first case study
and applying more formal techniques.

Packages from the SEL Experience
Factory (described in the box on p. 63)
were available to support project
development. These included an
evolved training program, a more
knowledgeable experimenter team to
monitor the projects, and several in-
process interactve sessions with the
project teams. Although we had begun
producing a handbook detailing the
SEL Cleanroom process model, it was
not ready in ume to give to the teams
at the start of these projects.

The project leader for the inirial
Cleanroom project participated as 2
member of the experimenter team,
served as the process modeler for the
handbook, and acted as a consultant to
the current projects.

We modified the process according
to the experiences of the Cleanroom
team in the first study. Project 1's team
had had difficulty using state machines
in system design, so we changed the
emphasis to ALlls’ box-soructure algo-
rithm.” We also added a more extensive

10022514L 3-39

JULY 1994

TABLE 1 - .(
PROJECT COMPARISONS FOR SEL TECHNOLOGY EVALUATION !

Evoluation (ontrolled experiments (leanroom case studies t
. espedt
| Reading vs.testing Cleanroom Project 1 Project 24 Project 28 1
’ Teamsize 32 participants Three-person develop- | Three—pe:son Four-person Fourteen-person
ment wearns (10 experi- [developmentteam; development team; development team;
‘ ment teamms; five control | two-person test team two-person test team four-person test
} teams); common inde- team
l pendent tester
I { . B
Projectsize Small (143365 LOC 1500 LOC, Fortran, 40,000 LOC, Fortran, 22,000 LOC, Forman, 160,000 LOC,
‘andappli- sample Forman elecronic message flight-dynamics flight-dynamics Fortan, flight-
| cagon programs system for graduate ground-support ground- support dvnamics a'round-
labomtory course svstem system support system
i
Results Cleanroom teams Project spends higher Projectcontinues Project reliability |
moree&ge‘:s use fewer ¢ percentage of effort trend in better relia- only skightly berter
uved:musun . resources, satisfy in design, uses fewe: bili hhienn;a:m- thrﬁmne;nshﬂe
techniques for fault requirementsmore | computer rescurces, ing e produc- uctivity
detection saccessfully, and and achieves bewer tivity Eelcw ine
make higher t- | productivity and refi-
age of ed ability than environ-
deliveries ment baseline

training program focusing on Clean-
room techniques, experiences from the
inidal Cleanroom team, and the rela-
tonship between the Cleanroom swd-
ies and the SEL’s general goals. The
instructon team included representa-
tives from the SEL, members of the
inidal team, and Mills. Mills gave talks
on various aspects of the methodology,
as well as motvational remarks on the
potential benefits of the Cleanroom
method in the software community.
Project 2A ran from March 1990
through January 1992. Project 2B
ran from February 1990 through
December 1992. Again, we examined
reliability, productivity, and process
characreristics, comparing them to
Project | results and the SEL baseline.

Analyzing and pockaging results. As Figure
3 shows, there were significant differ-
ences between the two projects. Error
and change rates for Project 2A contin-
ued to be favorable. Productvity rate,
however, returned to the SEL baseline
value. Error and change rates for
Project 2B increased from Project 1 val-

ues, although they remained lower than !

SEL baseline numbers. Productivity, |
. developer compilation, had problems

however, dropped below the baseline.
When we examined the effort dis-

tribution among the baseline and

Projects 1, 22, and 2B. we found 2

continuing upward wend in the per-
centage of design effort, and 2 corre-
sponding decrease in coding effort.
Additional analysis indicated that
although the overall error rates were
below the baseline, the percentage of
system components found to contain
errors during testng was sdll represen-
tative of baseline projects developed in
this environment. This suggests that
the breadth of error distribution did
not change with the Cleanroom
method.

In addidon to evaluatng objectve
data for these two projects, we gath-
ered subjective input through wrinten
and verbal feedback from project par-
ticipants. In general, input from
Project 2A team members, the smaller
of the two projects, was very favorable,

contractor team, had significant reser-

_ vatons about the method’s application.
Interestingly, though, specific short- |

comings were remarkably similar for
both teams. Four areas were generally
cited in the comments. Participants
were dissadsfied with the use of design
abstracdons and box saructures, did not
fully accept the ratonale for having no

coordinating information between
developers and testers. and cited the
need for a reference to the SEL Clean-

room process model.

Again, we packaged these results
into various reports and presentations,
which formed the basis for addidonal
process tailoring.

Third cose study. We have recently
begun 2 third case study to examine
difficuldes in scaling up the Cleanroom
method in the typical contractor-

. support environment and to verify pre-

vious wends and analyze addidonal tai-
loring of the SEL process model. We
expect the study to complete in

| September.

In keeping with this goal, we again
selected a project representative of the

I FDD contractor-support environment,
- but one that was estimated at 110,000
: LOC, somewhat smaller than Project
while Project 2B members, the larger !

b
)
i
{

2B. The project involves development

! of another entire mission attitude
| ground-support system. Several team

members have prior experience with

¢ the Cleanroom method through previ-
! ous SEL studies.

Experience Factory packages avail-
able to this project include training in
the Cleanroom method, an experienced
experimenter team, and the SEL
Cleanroom Process Model (the completed
handbook). In additon to modifying the
process model according to the results
from the first two case studies, we are

10022514L

3-40

6S

ORICINAL PACE IS
OF POOR QUALITY

providing regularly scheduled sessions in | process improvements. and correspond-

which the team members and experni-

menters can interact. These sessions
give team members the opportunity to !

communicate problems they are having

in applving the method, ask for clarifica- -

don, and get feedback on their acaviges.
This activity is aimed at closing 2 com-
munication gap that the contractor team
felt existed in Project 2B.

he conceprs associated with the QIP

and its use of measurement have
given us an evolutionary framework for
understanding, assessing, and packaging
the SEL’s experiences.

Table 1 shows how the evoluton of
our Cleanroom study progressed as we
used measurements from each experi-
ment and case study to define the next
experiment or study. The SEL Clean-
room process model has evolved on the
basis of results packaged through earlier
evaluatons. Some aspects of the target
methodology contnue to evolve: Ex-
perimentation with formal methods has
transitioned from functonal decomposi-
don and state machines to box-structure
design and again to box-soucture applhi-
cation as a way to abstract requirements.
Testng has shifted from 2 combined
statistical/functional approach, to a
purely statistical approach based on
operadonal scenarios. Our current case
study is examining the effect of allowing
developer compilaton.

Along the way, we have eliminated
some aspects of the candidate process;
we have not examined reliability models,
for example, since the environment does
not currendy have sufficient data to seed
them. We have also emphasized some
aspects. For example, we are conducting
studies that focus on the effect of peer
reviews and independent test teams for
non-Cleanroom projects. We are also
studying how to improve reading by
developing reading techniques through
off-line experimentaton.

The SEL baseline used for compari-
son is undergoing contnual evoludon.
Promising techniques are filtered into
the development organization as general

ing measures of the modified process
(effort distributon, reliability, cost) indi-
cate the effect on the baseline.

The SEL Cleanroom process
model has evolved 1o 2 point where it
appears applicable to smaller projects
(fewer than 50,000 LOC), but addi-
tional understanding and tailoring is
still required for larger scale efforts.
The model will condnue to evolve as
we gain more data from development
projects. Measurement will provide
baselines for comparison, identify
areas of concern and improvement,
and provide insight into the effects of

ACKNOWLEDGMENTS

This work has been supported by
NASA/GSFC contract NSG-3123. We
thank all the members of the SEL team
who have been part of the Cleanroom expen-
menter teams, the Cleanroom training
teams, and the various Cleanroom project
teams. We especially thank Frank
McGarry, Rose Pajerski. Sallv Godfrey,
Ara Kouchadjian, Sharon Waligora,
Harlan Mills, Michael Dver, and Terry
Baker for their efforts.

REFERENCES
1.'V. Basili and R. Selby, “Comparing the
Effecdveness of Software Testing Strategies,”
IEEE Trans. Sofr=are Enz.. Dec. 1987, pp.
1278-1296.

2. R Linger, H. Mills, and B. Witt, Spucnored

| Programmmg: Theory anc Pracice, Addison- ;
Waesley, Reading, Mass.. 1979. |

3. H. Mills, M. Dyer, and R. Linger,
“Cleanroom Sofrware Engineering,” JEEE
Softoare, Sept. 1987, pp. 10-24. i

4. R. Selby, Jr, V. Basili. and T. Baker, !
“Cleanroom Sofrware Development An !
Empirical Evaluation.” IEEE Trams. Soffmare |
Eng., Sept. 1987, pp. 1027-1037.

3. L. Landis et al., “Recommended Appraach 1o
Saftware Development: Ravision 3, Tech.
Report SEL-81-305, Sorware Engineering
Laboratory, Greenbele Md. 1992,

6. S. Green, Softare Engmecring Laborarory
(SEL) Clearrroon: Proces: Madel, Tech. Report
SEL-9}-004, Software Exgincening
Labaratory, Greenbeln Md., 1991,

7. H. Mills, “Stepwise Refinement and
Verificanon in Box-Struczured Svstems,”
JEEE Sefrware. June 194>, pp. 23-36.

W

process modifications. In this way,
we can set quantitative expectations
and evaluate the degree to which
goals have been achieved.

By adhering to the Quality Im-
provement Paradigm, we can refine
the process model from study to
study, assessing strengths and weak-
nesses, experiences, and goals.
However, our investigation into the
Cleanroom method illustrates that
the evolutionary infusion of technol-
ogy is not trivial and that process
improvement depends on a struc-
tured approach of understanding,
assessment, and packaging. *

Vicror Basili is a professor
of computer science at the
Institute for Advanced
Computer Studies at the
University of Marvland at
College Park. One of the
founders and principals of
the Software Engineering
Laboratory, his interests
include quanttavve
approaches for software
management, engineering. and quality assurance.
He is on the editorial board of Journa/ of Systems
and .

Basili received a BS in mathemaucs from
Fordham Coliege. an M$ in mathematics from
Svracuse University. and a2 PhD in computer sci-
ence from the University of Texas at Austin. He is
an IEEE fellow and a member of the IEEE
Computer Society.

Scort Green is a senior software engineer in
NASA Goddard’s Flight Dvnamics Division, where
he is involved in the project management of
ground-support systems and in leading software-
engineering studies at the Sofrware Engineering
Laboratory.

Green received 3 BS in computer science from
Lovola College.

Address questions about this article to Basili at
CS Dept., University of Maryland, College Park.
MD 20742; basili@c<.umd.cdu: or 10 Green at
NASA/GFSC. Code 332.1, Greenbelt. MD 207712
segreen@gsfemail.nasa.gov.

10022514L ORICL

B¥al~
FAL;

3-41
IS

OF POOR QUALITY

JULY 1884

SECTION 4—ADA TECHNOLOGY

The technical paper included in this section was originally prepared as indicated below.

e “Genericity Versus Inheritance Reconsidered: Self-Reference Using Generics,”
E. Seidewitz, Proceedings of the Conference on Object-Oriented Programming
Systems, Languages, and Applications, October 1994

10022514L 4-1

GENERICITY VERSUS INHERITANCE RECONSIDERED:
SELF-REFERENCE USING GENERICS
OOPSLA 94 -

Ed Seidewitz
NASA Goddard Space Flight Center
Code 552.3
Greenbelt MD 20771
(301)286-7631
eseidewitz @ gsfcmail.gsfc.nasa.gov

Abstract

As shown by the work of Bertrand Meyer, it is pos-
sible to simulate genericity using inheritance, but not
vice-versa. This is because genericity is a parameter-
ization mechanism with no way to deal with the
polymorphic typing introduced using inheritance.
Nevertheless, if we focus on the use of inheritance
as an implementation technique, its key feature is
the dynamic binding of self-referential operation
calls. This turns out to be basically a parameteriza-
tion mechanism that can in fact be simulated using
generics and static binding. And for some applica-
tions this approach may actually be of more than
academic interest.

Introduction

In his classic paper on “Genericity versus
Inheritance”, Bertrand Meyer concludes that inheri-
tance cannot be simulated using genericity because
genericity provides no mechanism for achieving the
polymorphism of inheritance [Meyer 86]. This is, of
course, true, since genericity is a parameterization
mechanism, not a typing mechanism. However, as
an implementation technique, rather than as a typing
mechanism, the polymorphism of inheritance is pri-
marily used to achieve the dynamic binding of self-
referential calls to object operations (e.g., messages
to self in Smalltalk).

This is not a minor point. Wegner and Zdonik
state that “In a world without self-reference, inheri-
tance reduces to invocation and inheritance hierar-
chies are simply tree-structured resource sharing hi-

10022514L 4-3

erarchies. However, recursive definitions are just as
fundamental for objects as for functions and proce-
dures.” [Wegner 88]. In effect, inheritance is not in-
heritance without self-reference. In this paper I will
show that this crucial self-reference property of in-
heritance can, in fact, be simulated using genericity.

Cook and Palsberg define a denotational seman-
tics of self-referential inheritance equivalent to the
traditional operational semantics using dynamic
binding [Cook 89]. They use a “wrapper” function
to parameterize the super- and self-references of a
class. These parameters are then “statically bound”
using a fixed-point operation. Thus, self-reference
becomes basically a parameterization problem,
which can be handled quite well by generics.

The following three sections show in detail how
this is done. The first section reviews the general
issues of self-reference in the traditional inheritance
mechanism. The next section shows how generics
can be used to parameterize this self-reference.
Finally, the third section extends this approach to
also parameterize superclass reference.

The examples in this paper are written in Ada
9X, the proposed revision to the Ada language
[Ada9X 94a] (likely to be approved in 1994). Ada
9X has powerful features for both genericity and ob-
ject-oriented inheritance and is therefore an excel-
lent real-world vehicle for the discussion here. I will
introduce and describe the Ada 9X mechanisms for
inheritance and genericity as necessary in the fol-
lowing. This should be sufficient for a self-con-
tained reading of this paper, but it is by no means a
complete overview of Ada 9X, or even its object-ori-
ented features. For fuller discussions of Ada 9X, I
refer the reader to the references [Ada9X 94a],
[Ada9X 94b] and [Taft 93].

PRECEDING. PACE BLANK NOT FULMED

Inheritance

Hauk uses an instructive example to discuss the is-
sues involved in inheritance and self-reference
[Hauck 93). This example is based on a class of ob-
jects that service hardware ports. One can output
characters and lines to such ports, with the output of
lines defined in terms of the output of characters.
We define this class in Ada 9X using the following
package specification:

package Port is
type Object is tagged private;

procedure Put(O: in out Object; C: in Character);
procedure Put_Line(0: in out Object; L: in String);

private
type Object is tagged record .. end record;

end Port;

In Ada 9X, encapsulation is achieved by defin-
ing abstract data types called private types. The type
Port .Object is defined as a private type in the visi-
ble part of the package specification above, with its
full definition given in the private part. Public
primitive operations on this private type are also de-
clared in the visible part of the package specifica-
tion. The implementations of these operations are
given in the corresponding package body, which we
will get to in a moment.

The use of the keyword tagged in the definition
of Port.object signals the availability of the ob-
Jject-oriented features of type extension and disparch-
ing for this type. For example, suppose we wish to
define a subclass of ports that buffer their output.
We can define this as an extension of Port.object:

with Port;
package Buffered_Port is

type Object (S8ize: Positive) is
new Port.Object with private;

procedure FPlush(0: in out Object);
private
type Object (Sixze: Positive) is new Port.Object with
record
Last: Natural := 0;

Buffer: String(l..Size);
ond record;

end Buffered_Port;

10022514L 4-4

The type Buffered_Port.Object is a derived
type of port .object extended with the components
required to implement a buffer. The discriminant
Size is used to set the maximum number of charac-
ters stored in the buffer. A derived type inherits the
primitive operations of its parent type. In this case,
Buffered_Port.Object inherits the operations put
and Put_Line from Port .object. An additional op-
eration, Flush, is defined solely on the type
Buffered_Port.Object.

Derived types are distinct types from their par-
ent types. Thus, given the declarations:

P: Port.Object;
B: Buffered_Port.Object;

the following assignment is illegal:

P 1= B; -- Type mismatch!

even though Buffered_rort.object is derived
from port.object. The following explicit conver-
sion is legal:

-=- An object of typ-c Buffered_Port.Object can be

-- converted to type Port.Object
Pi= Port.Object(B)

but the converted value is of type port .object, and
the extension components in B are lost.

Ada 9X separates polymorphism from the basic
tagged type construct through the concept of class-
wide types. For example, there is a class-wide type
denoted port.object’Class rooted in the tagged
type port.object. A class-wide type includes all
values of all types in the derivation class of its root
tagged type. The derivation class of a tagged type
includes the type and all descendant types derived
from it.

Due to the availability of type extension, the size
of a value of a class-wide type cannot generally be
determined at compile time. Therefore, polymorphic
variables in Ada 9X generally contain pointers to
class-wide types. Pointer types in Ada are known as
access types. Thus, given the following declarations:
type Port_Pointer is access Port.CObject’Class;

type Buffered_Port_Pointer is access
Buffered Port.Object’Class;

PP: Port_Pointer;
BP: Buffered_Port_ Pointer

the following assignment is legal:

-- Pointer to FPort.Object’Class can point to
-- Buffered Port’Class object
PP := BP;

because the derivation class of Buffered_Port .Ob-
ject is contained in the derivation class of Port.ob-
ject.

In addition to allowing polymorphic variables,
class-wide types also provide the mechanism for
polymorphic dynamic binding of operations. Each
value of a tagged type has a tag that identifies the
dynamic type of that value. When a primitive opera-
tion of a tagged type is passed a value of the corre-
sponding class-wide type (which may actually be a
value of any type derived from the root tagged type),
the operation dispatches to the implementation iden-
tified by the tag of the value. For example, given the
above declarations:

-- Note that “.all” dereferences pointers
Port.Put (PP.all,C); -- Bound to Put implementation
-~ in body of Port

PP :s BP,;

Port.Put (PP.all,C); -- Bound to Put isplementation

~- in body of Buffered_Port

The second call t0 Port .Put is dynamically bound
t0 Buffered_Port.Put, because the tag of the ob-
ject pointed to by pp after the assignment indicates
type Buffered_Port .Object.

Now let’s turn to the body of package Port.
This body contains the implementations of the two
operations on type Port .Object:

package body Port is

procedure Put(O: in out Object; C: in Character) is ..
end Put;

procedure Put_Line(O: in out Object; L: inm String) is
begin
for I in L’Range loop
Put (Object’Class (0),L(I));
end loop;
end Put_Line;

-- Redispatching call

end Port;

Note the use of the conversion object’Class(0) in
the call above to the procedure put. This conversion
causes the call to put to be dynamically bound, de-
pending on the dynamic tag of the argument o. This
is known as a redispatching call in Ada 9X, and it
has the same effect as the use of self in Smalltalk

10022514L 4-5

[Goldberg 83] or this in C++ (for a virtual func-
tion) [Stroustrup 91].

The use of redispatching in the implementation
of put_Line makes the implementation of type
Port.Object self-referential. This self-reference is
very important for the implementation of the opera-
tions of the derived type Buffered_Port.Object.
The body of package Buffered_prort must, of
course, include the implementation of the new oper-
ation Piush. In addition, the implementation of pro-
cedure put inherited from Port.object must be
overridden with a new implementation that handles
the buffering required for a Buf -
fered_Port.Object!

package body Buftered Port is

procedure Put(0: in out Object; C: in Character) is

begin
0.Last := O.Last + 1;
O.Buffer(O.Last) := C;
if O.Last = O.S8ize then

Plush(Object 'Class (0})

end if;

snd Put;

-~ Redispatching call

procedure Flush(O: in out Object) is
begin .

for I in 1..0.Last loop

Port .Put (Port.Object (0),0.Buffer(I));
-- Statically-bound call

ond loop;

O.Last := 0;
end PFlush;

end Buffered Port;

Note the conversion Port.object (0) in the stati-
cally bound call to the parent operation Port .Put in
the implementation of Flush.

Since the procedure Put_Line is not overridden
in the body of package Buffered_Prort, its imple-
mentation is inherited without change. This is shown
diagrammatically in Figure 1, where the shading in-
dicates that there is no implementation for Put_Line

package Port package Buffered_Port
. 4)
- . derived "
%ﬁw
overnides proc Pul-*

T
[morios Jp--

Figure 1

physically included in package Buffered_port.
Figure 1 also shows that the actual implementation
for put_Line in package Port makes a call on
Port.put. However, when this implementation is
inherited in package Buffered_port, the redispatch-
ing call to port.Put, when passed a value of type
Buffered_Port.Object, Will now be dynamically
bound to the overriding implementation of Buf-
fered_port.Put. Thus, the characters in a line are
all properly buffered, even though the implementa-
tion of procedure put_Line has not changed.

Genericity

. Consider again the hardware port example from the
last section. We wish to implement the same
Port.oObject private type, with the same visible
operations, but without the use of redispatching.
Nevertheless, we wish to retain the ability to redirect
the binding of self-referential calls in operations in-
herited by a descendant of Port .object. To do this
we make this binding explicit using a generic pack-
age nested within the specification of package rort:

package Port is

typs Object is tagged private;
procedure Put(0: in out Self; C: in Character);
procedure Put_Line(O: in out Self; L: in String);

generic
type Self(<>) is new Object with private;
package Operations is
procedure Do_Put(0: in out Self; C: in Character);
procedure Do_Put_Line(0O: in out Self;L: in String):
end Operations;

private
type Object is tagged record .. end record;

end Port;

While the type Port.object retains its opera-
tions Put and Put_Line, the actual implementation
of these operations are moved to the inner generic
package port .operations. This generic package is
parameterized by the type self, which must be a de-
scendant of port.object (Or Port.object itself).
As a descendant of Port.object, any actual type
bound to the parameter seif will have put and
Put_Line operations. This binding of the parameter
self will be used in the implementation of the oper-
ations Do_put and Do_Put_Line to replace any self-

10022514L 4-6

referential redispatching calls.

The generic package operations is nested in-
side port so that its body has visibility to the full
definition of the private type Port .object. This al-
lows the subprogram po_put to be implemented the
same way as Port .Put would have been in the last
section (if we had actually shown it!). The imple-
mentation of Do_Put_Line is also similar to the im-
plementation of Port.Put_Line in the last section,
but with a crucial difference:

package body Port is
package body Operations is

procedure Do_Put
(0: in out Self; C: in Character) is
- end Put;

procedure Do_Put_Line (0:in out Self;L:in String) is
begin
fer I in L’Range loop
Put (0, L(XI)); ~- Statically-bound call
end loop;
ond Put_Line;

end Operations;

package Self_Operations is
new Operations(Port.Object);

procedure Put(O: in out Self; C: in Character)
renames Self_Operations.Do_Put;

procedure Put_Line(0: in out Self; L: in String)
renanes Self Operations.Do_Put Line;

end Port;

In place of the redispatching call in the implementa-
tion of put_Line there is now a statically-bound call
in procedure po_Put_Line to the operation Put on
type self. Rather than using redispatching, self-ref-
erence is achieved by instantiating the generic pack-
age operations in the body of package port. This
instantiation effectively provides the fixed-point op-
eration of Cook and Palsberg.

The package self_operatiocns is an instantia-
tion of the generic package operations with type
Port .object used for the parameter se1f. The pro-
cedures Put and Put_Line are then simply renam-
ings of the real implementations from self_op-
erations (Which have the correct argument type
profiles, since self is Port.object for self_op-
erations!). The implementation of self_opera-
tions.Do_Put_Line contains a call to the operation

package Port

—

<3

1

package Self_Operations

. renames . overrides

. derived
S (- 12/ deit

f .

package Buffered_Port

package Self_Operations

S b R P A RS

. overrides

—
.-w:zéwi proc Do_Put I: "]

instantiates

IOUINPINIINURTN RS

e
generic package

oemmeereeeeeiel - proc Do_Flush
package Super_Operations

(Cemre 1

H ations

Figure 2

ITvoc Do_Put_Line |

L e

put for the generic type parameter self. Since the
type parameter Self is bound to Port.object for
this instantiation, its Put operation is simply
Port.Put, which is a renaming of self_opera-
tions.Do_Put. Thus Port.Put_Line self-referen-
tially calls se1f_operations.Do_Put, as shown in
Figure 2.

Note, however, that Port .Put_Line now makes
a statically-bound call to port .Put. Thus this call
will not be automatically redirected to Buf-
fered_Port.Put in the inherited operation Buf-
fered_Port.Put_Line. Instead, we must instantiate
the generic package Port.operations differently
for the implementation of the Buffered_ Port Op-
erations, so as to achieve the correct bindings. To
see how this is done, let’s turn next to the implemen-
tation of Buf fered_Port .Object using the our new
approach.

As we did with package port, we include a
nested generic package within package Buf-
fered_Port.

with Port;
package Buffered Port is

type Object (Size: Positive) is
new Port.Object with private;
procedure Plush(0: in out Self);

generic
type Self (<>) is new Object with private;

10022514L

4-7

package Operations is
procedures Do_Put(0: in out Self; C: in Character);
procedurs Do_Put_Line(0: in out Self;L: in String);
procedure Do_Flush(O: in out Self);

end Operations;

private

type Object(Size: Positive) is new Port.Object with
record
Last: Natural := 0;
Buffer: String(l..B8ize);
end record;

ond Buffered Port;

Note that inner generic package Buf-
fered_Port.Operations contains implementations
for the inherited operations pPut and Put_Line as
well as the new buffered port operation Flush:

package body Buffered Port is
package body Operaticns is

package Super_Operations is
new Port.Operations(8elf);

procedure Do_Put(0O: in out Self;C: ,in Character) is
begin

O.Last := O.Last + 1;

O.Buffer(0.Last) 1= C;

if O.Last = O.Size then

Plush(0); -- Statically-bound call

end if;

end Put;

procedure Do_Put_Line(0: in ocut Self; L: in String)
renames Super_Operations.Do_Put_Line;

procedure Do_Plush(0: in out Object) is
begin
for I in 1..0.Last loop
Super_COperations.Do_Put (0,0.Buffer(I));
-~ Statically-bound call
ond loop;
O.Last 1= 0y
end Plush;

end Operations;

package Self_Operations is
new Buffered_Port.Operations (Buffered_Port.Object);

procedure Put (0: in out Object; C: in Character)
Tenames Self_ Operations.Do_Put;

procedure Put_Line(0: in out Object; L: in String)
renamess Self Operations.Do_Put_Line;

procedurs Flush(0: in out Object)
renamss Self_ Operations.Do_Flush;

end Buffered_Port;

Note the nested instantiation of Port.operations
within Buffered_Port.Operations, passing along
the correct binding for se1f.

As shown in Figure 2, the instantiation Buf-
fered_Port.Self_Operations appropriately redi-
rects the self-referential calls to put and Flush to the
implementations as required. The nested instantia-
tion of Port.operations within Buf -
fered_Port.Self_ Operations assures that even
references to0 Put in Buffered_Port.Super_Opera-
tions.Do_Put_Line NOW call B u f-
fered_Port.Self_Operations.Do_Put.

Mixins

The wrapper functions of Cook and Palsberg param-
eterize both the super- and self-references of a class
[Cook 89]. In the last section we used generics to
parameterize the self-references. An extension of
this approach can be used to parameterize superclass
references as well.

To do this, we first turn the package defining the
subclass type into a generic package with the super-
class type as a generic parameter. Such a generic
package provides an independent increment of func-
tionality that can be added on to any appropriate su-
perclass type. We will call such a package a mixin,
since its functionality can be “mixed into” the super-
class. The term “mixin” comes originally from the
LISP-based Flavors system [Moon 86] and is usually
used in conjunction with multiple inheritance. The

10022514L 4-8

mixins we will define here are closer in spirit to the
generalized concept proposed by Bracha and Cook
[Bracha 90]. (See also the Ada 9X Rationale
[Ada9X 94b] for a discussion of using generics as
mixins in Ada 9X; I have also previously described
how mixins can even be created in non-object-ori-
ented Ada 83 [Seidewitz 92].)

For example, consider the buffered port class.
We can turn this class into a mixin by replacing its
superclass dependency on the port class with a
generic parameter:

generic

type Blement is private;
type Super(<>) is abstract tagged private;

package Buffer_Mixin is

type Object(Sixe: Positive) is abatract new Super
with private;

generic

type Self (<>) is new Object with private;

with procedure Super_ Put

(0: in out Belf; E: in Element);

with procedurs Self_Flush(O: in out Self);
package Operations is

procedure Do_Put(O: in out Self; E: in Element);

procedure Do_PFlush(0: in out Self);
end Operations;

private

type Elsment_Array is
array (Positive range <>) of Element;

type Object(Size: Positive) is
abstract new Super with
record
Last: Natural := 0;
Buffer: Element_Array(l..Size);
end Tecord;

end Buffered Port;

The type parameter super provides the required pa-
rameterization of the superclass type. The type
Buffer_Mixin.object is then derived from this
generic parameter. Since we needed to make this a
generic package anyway, the buffer mixin is further
generalized above by using the generic type parame-
ter Element (which does not need to be tagged) in
place of character.

Note that the type parameter super is declared
to be abstract. This means that the actual type used
for this parameter may be an abstract type (though it
may also be non-abstract). It is illegal to create ob-

jects of an abstract type, though there may be objects
of non-abstract descendants of the abstract type.
Further, an abstract type may have abstract opera-
tions that have no implementations (these are
equivalent to pure virtual functions in C++
[Stroustrup 91] or deferred routines in Eiffel
[Meyer 88]). Non-abstract descendants of an abstract
type must override all abstract operations with non-
abstract implementations. The type Buffer_ Mix-
in.object is also declared to be abstract, since it
may inherit abstract operations from Super.

* The type parameter Super is also not con-
strained to be a descendant of any known type.
Therefore, within the body of the generic package,
there are no primitive operations guaranteed to be
available for super (except for some basic opera-
tions like equality, but that’s a technicality). Since
there are no known operations to be inherited from
Super, and no other operations are defined for it, the
type Buffer_Mixin.Object also has no known
primitive operations. Instead, this type only provides
a basis for defining the implementations of the oper-
ations given in the generic package Buffer_ Mix-
in.Operations.

As before, the generic package operations is
parameterized by the derived type parameter self.
Now, however, there are no known primitive opera-
tions to be inherited from Buffer_Mixin.Object.
Instead, the only operations on self are those that
are explicitly given as generic parameters, in this
case super_put and self_Flush. As the names in-
dicate, the super_put parameter is intended to pro-
vide the superclass put operation, while the
Self_Flush parameter provides the self-referential
Flush operation. Thus, this generic clause defines
the complete inheritance interface for the buffer
mixin. (As will become clearer in a moment, the
Super_put operation is defined on the type selt
rather than super to ensure the correct binding of
-any self-referential calls it may make.)

Calls to the operations given by super_put and
Self_Flush are now the only external calls that can
be made on type self in the implementations of
Do_Put and Do_Flush:

package body Buffer_ Mixin is

10022514L 49

package body Operations is

procedure Do_Put(O: in out Self; R: in EBlement) is
begin

O.Last := O.Last + 1;

O.Buffer(O.Last) 1= E;

it O.Last = O.5ize then

. Belf_Plush{(0); -- Statically-bound call

end if;
end Put;

procedure Do_Flush(0: in out Self) is
begin

for I in 1..0.Last loop

Super_Put (0,0.Buffer(X));
-- Statically-bound call

end loop;

O.Last 1= 0;
end FPlush;

end Operations;

end Buffer Mixin;

Note that this buffer mixin does not define a
Do_Put_Line operation. This is because a mixin
should represent a discrete increment of functional-
ity, and the ability to put a line is not really part of
the buffering functionality as defined here.

As defined in the previous sections, the port
class does not have any superclass. However, for
consistency, we can also turn this class into a mixin:
generic

type Super(<>) is abstract tagged private;
package Port_Mixin is

type Object is abstract new Super with private;

generic

type Self (<>) is new Object with private;

with procedure Self_Put

(0: in out SelZ; C: in Character):;
package Operations is

procedurs Do_Put(0: in out Self; C: in Character);

procedure Do_Put_Line (0: in out Self;L: in String);

end Operations;

private

type Object is abstract new Super with
record .. end record;

end Port;
package body Port_Mixin is
package body Operations is

procedure Do_Put(O: in out Self;C: in Character) is
.~ end Put;

procedure Do_Put_Line (0:in out Self;L:in String) is

begin
for I in L’Range loop

C-2.

Self_Put(O,L(X));
ond loop;
end Put_Line;

-- Statically-bound call

end Operations;

end Port_Mixin;

Even though the hardware port functionality does
not require any superclass operations, this mixin al-
lows such functionality to be freely mixed in as part
of any class implementation.

Note that there is no typing relationship at all
between the port and buffer mixins. Mixins provide
incremental implementation completely indepen-
dently of problem-domain typing relationships. As a
complement to these mixins, we can define a set of
abstract types that capture typing relationships com-
pletely independently of implementation details.

For example, we can use two abstract types to
define the supertype/subtype relationship between
ports and buffered ports:

package Port_Types is

type Port is abstract tagged null record;

procedure Put (0: in ocut Port; C: in Character) is
abstract;

procedure Put_Line(O: in out Port; L: in String) is
abstract;

type Buffered_Port is
abstract new Port with null record;
procedure Flush(0: in out Buffered Port) is abstract;

ond Port_Types;

For simplicity, this one package defines both ab-
stract types, though they could equally well have
been defined in separate packages.

To actually implement the port and buffered port
classes, we need to bring together the functionality
implemented in the port and buffer mixins with the
type hierarchy defined by the port and buffered port
abstract types. The following shows how this is done
for the buffered port class:

with Port_Types, Port_Mixin, Buffer Mixin;
package Buffered_Port 1is

type Object is
new Port_Types.Buffered Port with private;

private

package Port_lmplementation is
new Port_Mixin(Port_Types.Buffered_Port);

package Buffered_Port_Implementation is
new Buffer Mixin
(Character, Port_Implementation.Object);

type Object is
new Buffered_Port_Implemsntation.Object with
aull record;

end Buffered Port;

The instantiations of the two mixins incrementally
builds the implementation of the type Buf-
fered_Port.Object.

As shown in Figure 3, the instantiation
Port_Implementation adds port-related compo-

" nents to the type Port_Types.Buffered Port

darived from

package Buffered_Port

o

’e

! proc Put I
= proc Put_Line I
} proc Flush I
\y

package Buffered_Port_implementation

o i'*f.-d (IL

package Port_implemertation)

,

. J J/

instantistes instantiates

: ?
e - rermiesansomsenes e nassanens -
; generic package ‘g g generic package 3
i Butter_Mixn H § Port_Mbin 3
Meeernrrassesescreasecsaeneasee e rneramenesrseaneaneasseneareesea e

Figure 3

10022514L

4-10

(which has no components itself), producing the
type Port_Implementation.Object (this is also an
example of why we need to allow mixin generics to
be instantiated with abstract types). The instantiation
Buffered_Port_Implementation then extends the
type Port_Implementation.Object with buffer-re-
lated components, producing the type Buf-
fered_Port_Implementation.Object. The full def-
inition of Buffered_port.object is a null exten-

sion of Buffered_Port_Implementation.Object.

The partial view of Buffered_Port.Object
given in the visible part of package Buffered_Port
declares this type to be a descendant of
Port_Types.Port. The full definition of Buf-
fered_Port .Object given in the private part of the
package is indeed a descendant of the abstract type
Port_Types.Port Vvia the type extensions resulting
from the two mixin instantiations and the final null
extension. As such, it inherits the three abstract op-
erations Put, Put_Line and Flush. However, Buf-
fered_Port.Object is not declared to be abstract
and so must provide implementations for these in-
herited operations.

The implementations of the Buffered_Port .0b-
ject operations are, of course, given in the body of
package Buffered_Port, using the operations
generic packages from the port and buffer mixins:

package body Buffered_Port is

package Port_Operations is
new Port_Implementation.Operations
(Buffered_Port.Object, Put);

package Buffered_Port_Operations is
new Buffered_Port_Implementation.Operatiocns
{ Buffered_Port.Cbject,
Port_Operations.Do_Put,
Flush);

procedure Put (O: in out Object; C: in Character)
renames Buffered_Port_Operations.Do_Put;

procedure Put_Line(0: in out Object; L: in String)
renames Port_Operations.Do_Put_Line;

procedurs Flush(0: in out Object)
renames Buffered_Port_Operations.Do_Flush;

end Buffered_Port;

Since the buffer implementation is now independent
of the port implementation, both operations
generic packages must be instantiated here. The in-

10022514L

stantiation of Port_Implementation.Operations
uses operation Buffered_Port.Put for the self-ref-
erential self_put generic parameter. The instantia-
tion of Buffered_Port_Implementation.Opera-
tions uses operation Buffered_Port.Flush for the
self-referential se1£_Flush parameter. However, it
uses the operation Port_Operations.Do_Put, not
Buffered_Port.Put, for the superclass operation
super_put. (This also shows why superclass opera-
tions must be parameters of the inner generic pack-
age Operations in a mixin.)

The actual Buffered_Port.Object Operations
are once again defined as renamings of subprograms
from the instantiated operations packages. Note,
however, that Put_Line is taken from Port_oOpera-
tions, not Buffered_Port_Operations, since the
buffer mixin does not implement a Put_Line Opera-
tion. Nevertheless, the generic instantiations insure
that Buffered_Port.Put_Line is implemented with
a proper self-referential call to Buffered_Port_Op-
erations.Do_Put (the reader can trace how this
happens using Figure 4).

Conclusion

4-11

The use of generics for the static-binding of self-ref-
erential calls is at least of academic interest in the
comparison of inheritance and genericity. However,
since the generic approach can be a bit cumbersome,
one may ask if it has any practical application. In
fact, there are some good reasons to consider this
approach:

1. Experience has shown that the common use of
self-reference with inheritance can make an ob-
ject-oriented program difficult to understand and
change (see, for example, [Taenzer 89],
[Leijter 92], [Wild 92] and [Wild 93]). The
generic approach gives the programmer much
more precise control about when and where
these self-referential bindings are made and thus
makes the use and intent of self-reference more
apparent to the maintainer.

2. In many safety-critical applications (such as
avionics software), any “dynamic” construct
(dynamic memory allocation, dynamics binding,
etc.) is regarded with suspicion. This is because

package body Butfered_Port

package Buffered_Port_Operations
-
4 ‘ proc Do_Flush [

package Buffered_Port_implementation

instantiales

instantiates

Figure 4

such features make it much harder to verify that
a program meets stringent safety requirements.
The generic approach provides self-reference
and deferred operation implementation with
fully static binding.

For a generic mixin, the generic clause of the in-
ner operatione generic package effectively
gives a complete “typing” of the inheritance in-
terface. That is, it explicitly lists all operations
required from the superclass and all operations
called self-referentially. As described by Hauk,
such a complete typing allows the type-safe re-
placement of a superclass implementation dur-
ing class library maintenance [Hauk 93] (see
also [Gibbs 90] on the issues of modifying class
hierarchies). For example, in the Buf-
fered_Prort implementation given in the last
section, the use of the Port_Mixin could be
easily replaced with a different implementation
of the hardware port functionality, so long as it
provided the put operation needed by but-
fer_Mixin. Such a replacement requires no

10022514L

changes to the implementation of the buffering
functionality, nor any changes to the clients of
Buffered_Port. For that matter, it would be
equally easy to replace the Buffer_Mixin with a
different implementation of the buffering func-
tionality.

Meyer was indeed correct in concluding that
genericity cannot be used to fully simulate inheri-
tance. However, inheritance is a much more expan-
sive mechanism than genericity, and thus the com-
parison with genericity is not entirely fair. We can
decompose the inheritance mechanism as type ex-
tension plus polymorphic typing plus self-reference.
Genericity is only comparable to the parameteriza-
tion-oriented effect of self-reference in the inheri-
tance mechanism. As we have seen in this paper, in-
heritance actually can be simulated by type exten-
sion plus polymorphic typing plus genericity, and
that the generic approach actually has some potential
advantages.

4-12

References

[Ada9X 94a] Ada 9X Reference Manual (Draft
Version 5.0), ANSVISO/IEC DIS 8652, Ada Map-
ping/Revision Team, Intermetrics, June 1994

[Ada9X 94b] Ada 9X Rationale (Draft Version 5.0),
Ada Mapping/Revision Team, Intermetrics, June
1994

[Bracha 90] G. Bracha and W. Cook, “Mixin-based
Inheritance”, Proceedings of the Conference on
Object-Oriented Programming Systems, Languages
and Applications / European Conference on Object-
Oriented Programming, SIGPLAN Notices, October
1990

[Cook 89] W. Cook and L. Palsberg, “A Denotation-
al Semantics of Inheritance and its Cormrectness”,
Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages and Applica-
tions, SIGPLAN Notices, October 1989

[Gibbs 90] S. Gibbs, D. Tsichritzis, E. Casais,
O. Nierstrasz and X. Pintado, “Class Management
for Software Communities”, Communications of the
ACM, September 1990

[Goldberg 93] A. Goldberg and D. Robson, Smali-
talk-80: The Language and Its Implementation,
Addison-Wesley, 1983

[Hauck 93] F. Hauck, “Inheritance Modeled with
Explicit Bindings: An Approach to Typed Inheri-
tance”, Proceedings of the Conference on Object-
Oriented Programming, Systems, Languages and
Applications, SIGPLAN Notices, September/Oc-
tober 1993

[Lejter 92] M. Leijter, S. Meyers and S. P. Reiss,
“Support for Maintaining Object-Oriented Pro-
grams”, IEEE Transactions on Software Enginee-
- ring, December 1992

[Meyer 86] B. Meyer, “Genericity versus Inheri-

10022514L

413

tance”, Proceedings of the Conference on Object-
Oriented Programming, Systems, Languages and
Applications, SIGPLAN Notices, November 1986

[Meyer 88] B. Meyer, Object-Oriented Software
Construction, Prentice-Hall, 1988

[Moon 86] D. A. Moon, “Object-Oriented Program-
ming with Flavors”, Proceedings of the Conference
on Object-Oriented Programming, Systems, Lang-
uages and Applications, SIGPLAN Notices, Novem-
ber 1986

[Seidewitz 92] E. Seidewitz, “Object-Oriented Pro-
gramming with Mixins in Ada”, Ada Letters,
March/April 1992

[Stroustrup 91] B. Stroustrup, The C++ Program-
ming Language (2nd ed.), Addison-Wesley, 1991

[Taenzer 89] D. Taenzer, M. Ganti and S. Podar,
“Object-Oriented Software Reuse: The Yoyo Prob-
lem”, Journal of Object-Oriented Programming,
September/October 1989

[Taft 93] T. Taft, “Ada 9X: From Abstraction -Ori-
ented to Object-Oriented”, Proceedings of the Cofer-
ence on Object-Oriented Programming, Systems,
Languages and Applications, SIGPLAN Notices,
October 1993.

[Wegner 88] P. Wegner and S. B. Zdonik, “Inheri-
tance as an Incremental Modification Mechanism or
What Like Is and Isn’t Like,” Proceedings of the
European Conference on Object-Oriented Program-
ming, LNCS 322, Springer-Verlag, August 1988

[Wilde 92] N. Wilde and R. Huitt, “Maintenance
Support for Object-Oriented Programs”, IEEE
Transactions on Software Engineering, December
1992

[Wilde 93] N. Wilde, P. Matthews and R. Huitt,
“Maintaining Object-Oriented Software”, IEEE
Software, January 1993 ’

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are or-
ganized into two groups. The first group is composed of documents issued by the Soft-
ware Engineering Laboratory (SEL) during its research and development activities.
The second group includes materials that were published elsewhere but pertain to SEL
activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engineering Workshop,
August 1976

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop,
September 1977

SEL-78-005, Proceedings From the Third Summer Software Engineering Workshop,
September 1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study,
P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp,
December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User’s Guide
(Revision 3), W. J. Decker, W. A. Taylor, et al., July 1986

SEL-79-002, The Software Engineering Laboratory: Relationship Equations,
K. Freburger and V. R. Basili, May 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language
(PDL) in the Goddard Space Flight Center (GSFC) Code 580 Software Design Environ-
ment, C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop,
November 1979

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R)
System Evaluation, W. J. Decker and C. E. Goorevich, May 1980

SEL-80-005, 4 Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engineering Workshop,
November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estimation Models for Software
Systems, J. F. Cook and F. E. McGarry, December 1980

BI-1
wias PRECEDING PAGE BLANK NOT FWMED

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering,
V. R. Basili, 1980

SEL-81-011, Evaluating Software Development by Analysis of Change Data,
D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve as a Model for Effort Distribution Over the Life of
Medium Scale Software Systems, G. O. Picasso, December 1981

SEL-81-013, Proceedings of the Sixth Annual Software Engineering Workshop, Decem-
ber 1981

SEL-81-014, Automated Collection of Software Engineering Data in the Software Engi-
neering Laboratory (SEL), A. L. Green, W. J. Decker, and F. E. McGarry, September
1981

SEL-81-101, Guide to Data Collection, V. E. Church, D. N. Card, F. E. McGarry, et al.,
August 1982

SEL-81-104, The Software Engineering Laboratory, D.N. Card, F. E.McGarry,
G. Page, et al,, February 1982

SEL-81-110, Evaluation of an Independent Verification and Validation (IV&V) Method-
ology for Flight Dynamics, G. Page, F. E. McGarry, and D. N. Card, June 1985

SEL-81-305, Recommended Approach to Software Development, L. Landis, S. Waligora,
F E. McGary, et al., June 1992

SEL-81-305SP1, Ada Developers’ Supplement to the Recommended Approach, R. Kes-
ter and L. Landis, November 1993

SEL-82-001, Evaluation of Management Measures of Software Development, G. Page,
D. N. Card, and F. E. McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop,
December 1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From
the Software Engineering Laboratory, V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program (SAP) System Description
(Revision 1), W. A. Taylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst,
M. G. Rohleder, and F. E. McGarry, October 1983

SEL-82-1306, Annotated Bibliography of Software Engineering Laboratory Literature,
L. Morusiewicz and J. Valett, November 1994

BI-2

10000229
11/15/94

SEL-83-001, An Approach to Software Cost Estimation, F. E. McGarry, G. Page,
D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development, D.N. Card,
F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Volume II, November 1983

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop,
November 1983

SEL-83-106, Monitoring Software Development Through Dynamic Variables (Revi-
sion 1), C. W. Doerflinger, November 1989

SEL-84-003, Investigation of Specification Measures for the Software Engineering Labo-
ratory (SEL), W. W. Agresti, V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings of the Ninth Annual Software Engineering Workshop,
November 1984

SEL-84-101, Manager’s Handbook for Software Development (Revision 1), L. Landis,
F. E. McGarry, S. Waligora, et al., November 1990

SEL-85-001, A Comparison of Software Verification Techniques, D.N. Card,
R. W. Selby, Jr., FE. E. McGarry, et al., April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray
Observatory Ada Development Team, R. Murphy and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing, CLEANROOM, and
Metrics, R. W. Selby, Jr., and V. R. Basili, May 1985

SEL-85-005, Software Verification and Testing, D. N. Card, E. Edwards, F McGarry,
and C. Antle, December 1985

SEL-85-006, Proceedings of the Tenth Annual Software Engineering Workshop,
December 1985

SEL-86-001, Programmer’s Handbook for Flight Dynamics Software Development,
R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development, E.Seidewitz and
M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development Environment (FDS/SDE)
Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume IV, November 1986

BI-3

10000229
11/15/84

SEL-86-005, Measuring Software Design, D. N. Card et al., November 1986

SEL-86-006, Proceedings of the Eleventh Annual Software Engineering Workshop,
December 1986)

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software
Development, S. Perry et al., March 1987

SEL-87-002, Ada® Style Guide (Version 1.1), E. Seidewitz et al., May 1987

SEL-87-003, Guidelines for Applying the Composite Specification Model (CSM),
W. W. Agresti, June 1987

SEL-87-004, Assessing the Ada® Design Process and Its Implications: A Case Study,
S. Godfrey, C. Brophy, et al., July 1987

SEL-87-009, Collected Software Engineering Papers: Volume V, November 1987

SEL-87-010, Proceedings of the Twelfth Annual Software Engineering Workshop,
December 1987

SEL-88-001, System Testing of a Production Ada Project: The GRODY Study, J. Seigle,
L. Esker, and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers: Volume VI, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase
Apnalysis, K. Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop,
November 1988

SEL-88-005, Proceedings of the First NASA Ada User’s Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study,
S. Godfrey and C. Brophy, September 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area: Implementation/
Testing Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and F. McGarry,
November 1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/
Goddard, C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop,
November 1989

SEL-89-008, Proceedings of the Second NASA Ada Users’ Symposium, November 1989

BI-4

10000229
11/15/84

SEL-89-103, Software Management Environment (SME) Concepts and Architecture
(Revision 1), R. Hendrick, D. Kistler, and J. Valett, September 1992

SEL-89-301, Software Engineering Laborary (SEL) Database Organization and User’s
Guide (Revision 3), L. Morusiewicz, December 1993

SEL-90-001, Database Access Manager for the Software Engineering Laboratory
(DAMSEL) User’s Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990

SEL-90-002, The Cleanroom Case Study in the Software Engineering Laboratory: Project
Description and Early Analysis, S. Green et al., March 1990

SEL-90-003, 4 Study of the Portability of an Ada System in the Software Engineering Lab-
oratory (SEL), L. O. Jun and S. R. Valett, June 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experi-
ment Summary, T. McDermott and M. Stark, September 1990

SEL-90-005, Collected Software Engineering Papers: Volume VIII, November 1990

SEL-90-006, Proceedings of the Fifteenth Annual Software Engineering Workshop,
November 1990

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and Man-
agement Rules, W. Decker, R. Hendrick, and J. Valett, February 1991

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report,
E. W. Booth and M. E. Stark, July 1991

SEL-91-004, Software Engineering Laboratory (SEL) Cleanroom Process Model,
S. Green, November 1991

SEL-91-005, Collected Software Engineering Papers: Volume IX, November 1991

SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop,
December 1991

SEL-91-102, Software Engineering Laboratory (SEL) Data and Information Policy (Revi-
sion 1), F. McGarry, August 1991

SEL-92-001, Software Management Environment (SME) Installation Guide, D. Kistler
and K. Jeletic, January 1992

SEL-92-002, Data Collection Procedures for the Software Engineering Laboratory (SEL)
Database, G. Heller, J. Valett, and M. Wild, March 1992

SEL-92-003, Collected Software Engineering Papers: Volume X, November 1992

SEL-92-004, Proceedings of the Seventeenth Annual Software Engineering Workshop,
December 1992

BI-5

10000229
11/15/94

SEL-93-001, Collected Software Engineering Papers: Volume XI, November 1993

SEL-93-002, Cost and Schedule Estimation Study Report, S. Condon, M. Regardie,
M. Stark, et al., November 1993 '

SEL-93-003, Proceedings of the Eighteenth Annual Software Engineering Workshop,
December 1993

SEL-94-001, Software Management Environment (SME) Components and Algorithms,
R. Hendrick, D. Kistler, and J. Valett, February 1994

SEL-94-002, Software Measurement Guidebook, M. Bassman, F. McGarry, R. Pajerski,
July 1994

SEL-94-003, C Style Guide, J. Doland and J. Valett, August 1994
SEL-94-004, Collected Software Engineering Papers: Volume XII, November 1994

SEL-RELATED LITERATURE

10Abd-El-Hafiz, S. K., V. R. Basili, and G. Caldiera, “Towards Automated Support for
Extraction of Reusable Components,” Proceedings of the IEEE Conference on Software
Maintenance-1991 (CSM 91), October 1991

4 Agresti, W. W, V. E. Church, D. N. Card, and P. L. Lo, “Designing With Ada for Sat-
ellite Simulation: A Case Study,” Proceedings of the First International Symposium on
Ada for the NASA Space Station, June 1986

ZAgresti, W. W, F E. McGarry, D. N. Card, et al., “Measuring Software Technology,”
Program Transformation and Programming Environments. New York: Springer-Verlag,
1984

1Bailey, J. W,, and V. R. Basili, “A Meta-Model for Software Development Resource
Expenditures,” Proceedings of the Fifth International Conference on Software Engineer-
ing. New York: IEEE Computer Society Press, 1981

8Bailey, J. W, and V. R. Basili, “Software Reclamation: Improving Post-Development
Reusability,” Proceedings of the Eighth Annual National Conference on Ada Technology,
March 1990

10Bailey, J. W, and V. R. Basili, “The Software-Cycle Model for Re-Engineering and
Reuse,” Proceedings of the ACM Tri-Ada 91 Conference, October 1991

1Basili, V. R., “Models and Metrics for Software Management and Engineering,”
ASME Advances in Computer Technology, January 1980, vol. 1

Basili, V. R., Titorial on Models and Metrics for Software Management and Engineering.
New York: IEEE Computer Society Press, 1980 (also designated SEL-80-008)

BI-6

10000229
11/15/84

3Basili, V. R., “Quantitative Evaluation of Software Methodology,” Proceedings of the
First Pan-Pacific Computer Conference, September 1985

Basili, V. R., Maintenance = Reuse-Oriented Software Development, University of
Maryland, Technical Report TR-2244, May 1989

7Basili, V. R., Software Development: A Paradigm for the Future, University of Maryland,
Technical Report TR-2263, June 1989

8Basili, V. R., “Viewing Maintenance of Reuse-Oriented Software Development,”
IEEE Software, January 1990

1Basili, V. R., and J. Beane, “Can the Parr Curve Help With Manpower Distribution
and Resource Estimation Problems?,” Journal of Systems and Software, February 1981,
vol. 2, no. 1

9Basili, V. R., G. Caldiera, and G. Cantone, “A Reference Architecture for the Compo-
nent Factory,”ACM Transactions on Software Engineering and Methodology, January
1992

10Basili, V,, G. Caldiera, F. McGarry, et al., “The Software Engineering Laboratory—
An Operational Software Experience Factory,” Proceedings of the Fourteenth Interna-
tional Conference on Software Engineering (ICSE 92), May 1992

1Basili, V. R., and K. Freburger, “Programming Measurement and Estimation in the
Software Engineering Laboratory,” Journal of Systems and Sofiware, February 1981,
vol. 2, no. 1

12Basili, V., and S. Green, “Software Process Evolution at the SEL,” IEEE Software,
July 1994

3Basili, V. R., and N. M. Panlilio-Yap, “Finding Relationships Between Effort and
Other Variables in the SEL,” Proceedings of the International Computer Software and
Applications Conference, October 1985

4Basili, V. R., and D. Patnaik, 4 Study on Fault Prediction and Reliability Assessment in
the SEL Environment, University of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, “Software Errors and Complexity: An Empirical
Investigation,” Communications of the ACM, January 1984, vol. 27, no. 1

1Basili, V. R., and T. Phillips, “Evaluating and Comparing Software Metrics in the Soft-
ware Engineering Laboratory,” Proceedings of the ACM SIGMETRICS Symposium/
Workshop: Quality Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, “ARROWSMITH-P—A Prototype Expert System for
Software Engineering Management,” Proceedings of the IEEE/MITRE Expert Systems
in Government Symposium, October 1985

BI-7

10000229
11/15/84

Basili, V. R., and J. Ramsey, Structural Coverage of Functional Testing, University of
Maryland, Technical Report TR-1442, September 1984

Basili, V. R., and R. Reiter, “Evaluating Automatable Measures for Software Develop-
ment,” Proceedings of the Workshop on Quantitative Software Models for Reliability,
Complexity, and Cost. New York: IEEE Computer Society Press, 1979

5Basili, V. R., and H. D. Rombach, “Tailoring the Software Process to Project Goals
and Environments,” Proceedings of the 9th International Conference on Software Engi-
neering, March 1987

SBasili, V. R., and H. D. Rombach, “T A M E: Thiloring an Ada Measurement Envi-
ronment,” Proceedings of the Joint Ada Conference, March 1987

SBasili, V. R.,and H. D. Rombach, “T A M E: Integrating Measurement Into Software
Environments,” University of Maryland, Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, “The TAME Project: Towards Improvement-
Oriented Software Environments,” IEEE Transactions on Software Engineering, June
1988

Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: A
Reuse-Enabling Software Evolution Environment, University of Maryland, Technical
Report TR-2158, December 1988

8Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse:
Model-Based Reuse Characterization Schemes, University of Maryland, Technical
Report TR-2446, April 1990

9]§asﬂi, V. R,, and H. D. Rombach, “Support for Comprehensive Reuse,” Software En-
gineering Journal, September 1991

3Basili, V. R., and R. W. Selby, Jr., “Calculation and Use of an Environment’s Charac-
teristic Software Metric Set,” Proceedings of the Eighth International Conference on Sofft-
ware Engineering. New York: IEEE Computer Society Press, 1985

Basili, V. R., and R. W. Selby, “Comparing the Effectiveness of Software Testing Strat-
egies,” IEEE Transactions on Software Engineering, December 1987

3Basili, V. R., and R. W. Selby, Jr., “Four Applications of a Software Data Collection
and Analysis Methodology,” Proceedings of the NATO Advanced Study Institute, August
1985

SBasili, V. R., and R. Selby, “Comparing the Effectiveness of Software Testing Strate-
gies,” IEEE Transactions on Software Engineering, December 1987

9Basili, V. R., and R. W. Selby, “Paradigms for Experimentation and Empirical Studies
in Software Engineering,” Reliability Engineering and System Safety, January 1991

BI-8

10000229
11/15/84

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, “Experimentation in Software
Engineering,” IEEE Transactions on Software Engineering, July 1986

2Basili, V.R., R. W. Selby, and T. Phillips, “Metric Analysis and Data Validation Across
FORTRAN Projects,” IEEE Transactions on Software Engineering, November 1983

2Basili, V. R., and D. M. Weiss, A Methodology for Collecting Valid Software Engineering
Data, University of Maryland, Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, “A Methodology for Collecting Valid Software Engi-
neering Data,” IEEE Transactions on Software Engineering, November 1984

1Basili, V. R., and M. V. Zelkowitz, “The Software Engineering Laboratory: Objec-
tives,” Proceedings of the Fifteenth Annual Conference on Computer Personnel Research,
August 1977

Basili, V. R., and M. V. Zelkowitz, “Designing a Software Measurement Experiment,”
Proceedings of the Software Life Cycle Management Workshop, September 1977

1Rasili, V. R., and M. V. Zelkowitz, “Operation of the Software Engineering Labora-
tory,” Proceedings of the Second Software Life Cycle Management Workshop, August
1978

1Rasili, V. R., and M. V. Zelkowitz, “Measuring Software Development Characteristics
in the Local Environment,” Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, “Analyzing Medium Scale Software Development,”
Proceedings of the Third International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1978

Bassman, M. J., E McGarry, and R. Pajerski, Software Measurement Guidebook,
NASA-GB-001-04, Software Engineering Program, July 1994

9Booth, E. W,, and M. E. Stark, “Designing Configurable Software: COMPASS Imple-
mentation Concepts,” Proceedings of Tri-Ada 1991, October 1991

10Booth, E. W,, and M. E. Stark, “Software Engineering Laboratory Ada Performance
Study—Results and Implications,” Proceedings of the Fourth Annual NASA Ada User’s
Symposium, April 1992

10Briand, L. C., and V. R. Basili, “A Classification Procedure for the Effective Manage-
ment of Changes During the Maintenance Process,” Proceedings of the 1 992 IEEE Con-
ference on Software Maintenance (CSM 92), November 1992

10Briand, L. C., V. R. Basili, and C. J. Hetmanski, “Providing an Empirical Basis for
Optimizing the Verification and Testing Phases of Software Development,” Proceed-
ings of the Third IEEE International Symposium on Software Reliability Engineering
(ISSRE 92), October 1992

BI-9

10000229
11/15/84

UBriand, L. C., V. R. Basili, and C. J. Hetmanski, Developing Interpretable Models with
Optimized Set Reduction for Identifying High Risk Software Components, TR-3048,
University of Maryland, Technical Report, March 1993

12Briand, L. C., V. R. Basili, Y. Kim, and D. R. Squier, “A Change Analysis Process to
Characterize Software Maintenance Projects,” Proceedings of the International Confer-
ence on Software Maintenance, September 1994

9Briand, L. C., V. R. Basili, and W, M. Thomas, 4 Pattern Recognition Approach for Soft-
ware Engineering Data Analysis, University of Maryland, Technical Report TR-2672,
May 1991

HUBriand, L. C., S. Morasca, and V. R. Basili, “Measuring and Assessing Maintainability
at the End of High Level Design,” Proceedings of the 1993 IEEE Conference on Software
Maintenance (CSM 93), November 1993

12Briand, L., S. Morasca, and V. R. Basili, Defining and Validating High-Level Design
Metrics, University of Maryland, Technical Report TR-3301, June 1994

1Briand, L. C., W. M. Thomas, and C. J. Hetmanski, “Modeling and Managing Risk
Early in Software Development,” Proceedings of the Fifteenth International Conference
on Software Engineering (ICSE 93), May 1993

SBrophy, C. E., W. W. Agresti, and V. R. Basili, “Lessons Learned in Use of Ada-
Oriented Design Methods,” Proceedings of the Joint Ada Conference, March 1987

6Brophy, C. E, S. Godfrey, W. W. Agresti, and V. R. Basili, “Lessons Learned in the
Implementation Phase of a Large Ada Project,” Proceedings of the Washington Ada
Technical Conference, March 1988

2Card, D. N., “Early Estimation of Resource Expenditures and Program Size,”
Computer Sciences Corporation, Technical Memorandum, June 1982

2Card, D. N., “Comparison of Regression Modeling Techniques for Resource Estima-
tion,” Computer Sciences Corporation, Technical Memorandum, November 1982

3Card, D.N,, “A Software Technology Evaluation Program,” Annais do XVIII
Congresso Nacional de Informatica, October 1985

3Card, D. N., and W. W. Agresti, “Resolving the Software Science Anomaly,” Journal
of Systems and Software, 1987

6Card, D. N., and W. W. Agresti, “Measuring Software Design Complexity,” Journal of
Systems and Software, June 1988

4Card, D.N., V. E. Church, and W. W. Agresti, “An Empirical Study of Software Design
Practices,” IEEE Transactions on Software Engineering, February 1986

Card, D. N,, V. E. Church, W. W, Agresti, and Q. L. Jordan, “A Software Engineering
View of Flight Dynamics Analysis System,” Parts I and II, Computer Sciences Corpora-
tion, Technical Memorandum, February 1984

BI-10

10000223
11/15/94

Card,D.N,, Q. L.Jordan, and V. E. Church, “Characteristics of FORTRAN Modules,”
Computer Sciences Corporation, Technical Memorandum, June 1984

5Card, D.N., F. E. McGarry, and G.T Page, “Evaluating Software Engineering
Technologies,” IEEE Transactions on Software Engineering, July 1987

3Card, D. N., G. T. Page, and F. E. McGarry, “Criteria for Software Modularization,”
Proceedings of the Eighth International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985

1Chen, E., and M. V. Zelkowitz, “Use of Cluster Analysis To Evaluate Software Engi-
neering Methodologies,” Proceedings of the Fifth International Conference on Software
Engineering. New York: IEEE Computer Society Press, 1981

4Church, V.E., D.N. Card, W. W. Agresti, and Q. L. Jordan, “An Approach for
Assessing Software Prototypes,” ACM Software Engineering Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, “Monitoring Software Development Through
Dynamic Variables,” Proceedings of the Seventh International Computer Software and
Applications Conference. New York: IEEE Computer Society Press, 1983

Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of
Maryland, Technical Report TR-1895, August 1987 (NOTE: 100 pages long)

6Godfrey, S., and C. Brophy, “Experiences in the Implementation of a Large Ada
Project,” Proceedings of the 1988 Washington Ada Symposium, June 1988

SJeffery, D. R., and V. Basili, Characterizing Resource Data: A Model for Logical
Association of Software Data, University of Maryland, Technical Report TR-1848, May
1987

6Jeffery, D. R., and V. R. Basili, “Validating the TAME Resource Data Model,” Pro-
ceedings of the Tenth International Conference on Software Engineering, April 1988

111 i N.R., and M. V. Zelkowitz, “An Information Model for Use in Software Manage-
ment Estimation and Prediction,” Proceedings of the Second International Conference on
Information Knowledge Management, November 1993

5Mark, L., and H. D. Rombach, A Meta Information Base for Sofiware Engineering,
University of Maryland, Technical Report TR-1765, July 1987

6Mark, L., and H. D. Rombach, “Generating Customized Software Engineering
Information Bases From Software Process and Product Specifications,” Proceedings of
the 22nd Annual Hawaii International Conference on System Sciences, January 1989

SMcGarry, E E.,and W. W. Agresti, “Measuring Ada for Software Development in the
Software Engineering Laboratory (SEL),” Proceedings of the 21st Annual Hawaii
International Conference on System Sciences, January 1988

BI-11

10000228
11/15/94

"McGarry, F, L. Esker, and K. Quimby, “Evolution of Ada Technology in a Production
Software Environment,” Proceedings of the Sixth Washington Ada Symposium
(WADAS), June 1989

3McGarry, F. E., J. Valett, and D. Hall, “Measuring the Impact of Computer Resource
Quality on the Software Development Process and Product,” Proceedings of the
Hawaiian International Conference on System Sciences, January 1985

3Page, G., F. E. McGarry, and D. N. Card, “A Practical Experience With Independent
Verification and Validation,” Proceedings of the Eighth International Computer Software
and Applications Conference, November 1984

2porter, A. A., L. G. Votta, Jr., and V. R. Basili, Comparing Detection Methods for Soft-
ware Requirements Inspections: A Replicated Experiment, University of Maryland, Tech-
nical Report TR-3327, July 1994

SRamsey, C. L., and V. R. Basili, “An Evaluation of Expert Systems for Software Engi-
neering Management,” JEEE Transactions on Software Engineering, June 1989

3Ramsey, J., and V. R. Basili, “Analyzing the Test Process Using Structural Coverage,”
Proceedings of the Eighth International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985

SRombach, H. D., “A Controlled Experiment on the Impact of Software Structure on
Maintainability,” IEEE Transactions on Software Engineering, March 1987

8Rombach, H. D., “Design Measurement: Some Lessons Learned,” IEEE Software,
March 1990

9Rombach, H. D., “Software Reuse: A Key to the Maintenance Problem,” Butterworth
Journal of Information and Software Technology, January/February 1991

6Rombach, H. D., and V. R. Basili, “Quantitative Assessment of Maintenance: An
Industrial Case Study,” Proceedings From the Conference on Software Maintenance,
September 1987

6Rombach, H. D., and L. Mark, “Software Process and Product Specifications: A Basis
for Generating Customized SE Information Bases,” Proceedings of the 22nd Annual
Hawaii International Conference on System Sciences, January 1989

TRombach, H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance
Improvement Program: Lessons Learned in the SEL, University of Maryland, Technical
Report TR-2252, May 1989

10Rombach, H. D., B. T. Ulery, and J. D. Valett, “Toward Full Life Cycle Control:
Adding Maintenance Measurement to the SEL,” Journal of Systems and Software,
May 1992

BI-12

10000229
1115/84

6Seidewitz, E., “Object-Oriented Programming in Smalltalk and Ada,” Proceedings
of the 1987 Conference on Object-Oriented Programming Systems, Languages, and
Applications, October 1987

SSeidewitz, E., “General Object-Oriented Software Development: Background and
Experience,” Proceedings of the 21st Hawaii International Conference on System
Sciences, January 1988

6Seidewitz, E., “General Object-Oriented Software Development with Ada: A Life
Cycle Approach,” Proceedings of the CASE Technology Conference, April 1988

9Seidewitz, E., “Object-Oriented Programming Through Type Extension in Ada 9X,”
Ada Letters, March/April 1991

10Sejdewitz, E., “Object-Oriented Programming With Mixins in Ada,” Ada Letters,
March/April 1992

12Geidewitz, E., “Genericity Versus Inheritance Reconsidered: Self-Reference Using
Generics,” Proceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications, October 1994

4Seidewitz, E., and M. Stark, “Towards a General Object-Oriented Software Develop-
ment Methodology,” Proceedings of the First International Symposium on Ada for the
NASA Space Station, June 1986

9Seidewitz, E., and M. Stark, “An Object-Oriented Approach to Parameterized Soft-
ware in Ada,” Proceedings of the Eighth Washington Ada Symposium, June 1991

8Stark, M., “On Designing Parametrized Systems Using Ada,” Proceedings of the
Seventh Washington Ada Symposium, June 1990

11Stark, M., “Impacts of Object-Oriented Technologies: Seven Years of SEL Studies,”
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications, September 1993

7Stark, M. E. and E. W. Booth, “Using Ada to Maximize Verbatim Software Reuse,”
Proceedings of TRI-Ada 1989, October 1989

S5Stark, M., and E. Seidewitz, “Towards a General Object-Oriented Ada Lifecycle,”
Proceedings of the Joint Ada Conference, March 1987

10Straub, P. A., and M. V. Zelkowitz, “On the Nature of Bias and Defects in the Soft-
ware Specification Process,” Proceedings of the Sixteenth International Computer Soft-
ware and Applications Conference (COMPSAC 92), September 1992

8Straub, P. A., and M. V. Zelkowitz, “PUC: A Functional Specification Language for
Ada,” Proceedings of the Tenth International Conference of the Chilean Computer Science
Society, July 1990

BI-13

10000229
11/15/84

"Sunazuka, T, and V. R. Basili, Integrating Automated Support for a Software Manage-
ment Cycle Into the TAME System, University of Maryland Technical Report TR-2289,
July 1989

10Tjan, J., A. Porter, and M. V. Zelkowitz, “An Improved Classification Tree Analysis of
High Cost Modules Based Upon an Axiomatic Definition of Complexity,” Proceedings
of the Third IEEE International Symposium on Software Reliability Engineering
(ISSRE 92), October 1992

Turner, C., and G. Caron, 4 Comparison of RADC and NASA/SEL Software Develop-
ment Data, Data and Analysis Center for Software, Special Publication, May 1981

0valett, J. D., “Automated Support for Experience-Based Software Management,”
Proceedings of the Second Irvine Software Symposium (ISS '92), March 1992

5valett, J. D., and F. E. McGarry, “A Summary of Software Measurement Experiences
in the Software Engineering Laboratory,” Proceedings of the 21st Annual Hawaii
International Conference on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, “Evaluating Software Development by Analysis of
Changes: Some Data From the Software Engineering Laboratory,” IEEE Transactions
on Software Engineering, February 1985

SWu, L., V. R. Basili, and K. Reed, “A Structure Coverage Tool for Ada Software Sys-
tems,” Proceedmgs of the Joint Ada Conference, March 1987

1Zelkowitz, M. V., “Resource Estimation for Medium-Scale Software Projects,” Pro-
ceedings of the Twelfth Conference on the Interface of Statistics and Computer Science.
New York: IEEE Computer Society Press, 1979

2Zelkowitz, M. V., “Data Collection and Evaluation for Experimental Computer
Science Research,” Empirical Foundations for Computer and Information Science (Pro-
ceedings), November 1982

6Zelkowitz, M. V., “The Effectiveness of Software Prototyping: A Case Study,” Pro-
ceedings of the 26th Annual Technical Symposium of the Washington, D. C., Chapter of the
ACM, June 1987

6Zelkowitz, M. V,, “Resource Utilization During Software Development,” Journal of
Systems and Software, 1988

87 elkowitz, M. V., “Evolution Towards Specifications Environment: Experiences With
Syntax Editors,” Information and Software Technology, April 1990

BI-14

10000229
11/15/04

NOTES:

IThis article also appears in SEL-82-004,
Volume 1, July 1982.

2This article also appears in SEL-83-003,
Volume II, November 1983.

3This article also appears in SEL-85-003,
Volume III, November 1985.

4This. article also appears in SEL-86-004,
Volume IV, November 1986.

5This article also appears in SEL-87-009,
Volume V, November 1987.

SThis article also appears in SEL-88-002,
Volume VI, November 1988.

TThis article also appears in SEL-89-006,
Volume VII, November 1989.

8This article also appears in SEL-90-005,
Volume VIII, November 1990.

9This article also appears in SEL-91-005,
Volume IX, November 1991.

10This article also appears in SEL-92-003,
Volume X, November 1992.

11This article also appears in SEL-93-001,
Volume XI, November 1993.

12This article also appears in SEL-94-004,
Volume XII, November 1994.

BI-15

10000228
11/15/94

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

REPORT DOCUMENTA 1ON PAGE OB b 0304-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data nesded, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budgst, Paperwork Reduction Project (0704-0188), Washington, DC_20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
November 1994 Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Collected Software Engineering Papers: Volume XII
552
Y,
6. AUTHOR(S) A s
Software Engineering Laboratory . *3
. 117
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Branch REPORT NUMBER
Code 552
Goddard Space Flight Center SEL-94-004
Greenbelt, Maryland -
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
NASA Aeronautics and Space Administration
Washington, D.C. 20546-0001 CR-189409
11. SUPPLEMENTARY NOTES
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category: 61

Report is available from the NASA Center for AeroSpace Information,

800 Elkridge Landing Road, Linthicum Heights, MD 21090; (301) 621-0390.

13. ABSTRACT (Maximum 200 words)

This document is a collection of selected technical papers produced by participants in the Software Engineering
Laboratory (SEL) from November 1993 through October 1994. The purpose of the document is to make available, in one
reference, some results of SEL research that originally appeared in a number of different forums. This is the 12th such
volume of technical papers produced by the SEL. Although these papers cover several topics related to software engineering,
they do not encompass the entire scope of SEL activities and interests. Additional information about the SEL and its research
efforts may be obtained from the sources listed in the bibliography at the end of this document.

14. SUBJECT TERMS l15. NUMBER ?&)PAGES

Software Engineering, Software Measurement, Ada Technology, Bibliography
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified Unlimited

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Pl s d L. BRIAIL AL AAR 4R AAA SRR

